【題目】如圖,在中,,點(diǎn)邊上移動(dòng)(點(diǎn)不與重合),滿足,且點(diǎn)分別在上。

1)求證:

2)當(dāng)點(diǎn)移動(dòng)到中點(diǎn)時(shí),求證:點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在直線上。

【答案】1)證明見(jiàn)解析;(2)證明見(jiàn)解析.

【解析】

1)利用等腰三角形性質(zhì)得出∠B=∠C,之后利用等量代換得出∠BED=∠CDF從而證明三角形相似

(2)連接EF,由(1)得到△BDE∽△CFD,所以,進(jìn)一步證明△DEF∽△CDF得出∠EFD=∠CFD從而證明結(jié)論

解(1)∵AB=AC

∴∠B=∠C

∵∠B=∠EDF

∴∠BED+∠BDE=∠BDE+∠CDF

∴∠BED=∠CDF

∴△BDE∽△CFD

(2)

如圖,連接EF

∵△BDE∽△CFD

∵BD=CD

∵∠EDF=∠C

∴△DEF∽△CDF

∴∠EFD=∠CFD

∴E關(guān)于直線DF對(duì)稱點(diǎn)在直線AC上

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,函數(shù)y=的圖像與xy軸分別交于點(diǎn)A、B.AB為直徑作M.

1)求AB的長(zhǎng);

2)點(diǎn)DM上任意一點(diǎn),且點(diǎn)D在直線AB上方,過(guò)點(diǎn)DDHAB,垂足為H,連接BD.

①當(dāng)BDH中有一個(gè)角等于BAO兩倍時(shí),求點(diǎn)D的坐標(biāo);

②當(dāng)DBH=45°時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=-x-3x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)Px軸上一動(dòng)點(diǎn),以點(diǎn)P為圓心,以1個(gè)單位長(zhǎng)度為半徑作⊙P,當(dāng)⊙P與直線AB相切時(shí),點(diǎn)P的坐標(biāo)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△中,,是邊上的中線,于點(diǎn),交于點(diǎn).

(1)求證:

(2)過(guò)點(diǎn)的延長(zhǎng)線于點(diǎn).求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1如圖1,網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1,點(diǎn)AB均在格點(diǎn)上.則線段AB的長(zhǎng)為 .請(qǐng)借助網(wǎng)格,僅用無(wú)刻度的直尺在AB上作出點(diǎn)P,使AP.

2)⊙O為△ABC的外接圓,請(qǐng)僅用無(wú)刻度的直尺,依下列條件分別在圖2,圖3的圓中畫(huà)出一條弦,使這條弦將△ABC分成面積相等的兩部分(保留作圖痕跡,不寫(xiě)作法,請(qǐng)下結(jié)論注明你所畫(huà)的弦).

①如圖2,ACBC

②如圖3,P為圓上一點(diǎn),直線lOPlBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店以40元/千克的單價(jià)新進(jìn)一批茶葉,經(jīng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷售量y(千克與銷售單價(jià)x(元/千克之間的函數(shù)關(guān)系如圖所示.

(1)根據(jù)圖象,yx的函數(shù)關(guān)系式;

(2)商店想在銷售成本不超過(guò)3000元的情況下,使銷售利潤(rùn)達(dá)到2400元,問(wèn)銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(9)已知:ABCD的兩邊ABAD的長(zhǎng)是關(guān)于x的方程的兩個(gè)實(shí)數(shù)根.

1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);

2)若AB的長(zhǎng)為2,那么ABCD的周長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為解決樓房之間的擋光問(wèn)題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為米,中午時(shí)不能擋光. 如圖,某舊樓的一樓窗臺(tái)高1米,要在此樓正南方米處再建一幢新樓. 已知該地區(qū)冬天中午時(shí)陽(yáng)光從正南方照射,并且光線與水平線的夾角最小為°,在不違反規(guī)定的情況下,請(qǐng)問(wèn)新建樓房最高_____________. (結(jié)果精確到1.,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,二次函數(shù)的圖象與x軸交于AB兩點(diǎn),其中A點(diǎn)坐標(biāo)為,點(diǎn),另拋物線經(jīng)過(guò)點(diǎn)M為它的頂點(diǎn).

求拋物線的解析式;

的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案