【題目】如圖,、是以為直徑的半圓的兩條切線,與半圓交于點,連接,過點作,交于點.
(1)若弧AE的度數(shù)為140,求的度數(shù);
(2)求證: .
【答案】(1)∠D=70°,
(2)見詳解.
【解析】
(1)連接OE,利用切線證明∠DBA=∠CAB=90°,根據(jù)已知得∠AOE=140°,在直角三角形ABD中即可解題;(2)利用同角的余角相等證明∠CEA=∠FEB, ∠CAE=∠EBA即可證明三角形相似.
解:(1)設圓的圓心為點O,連接OE(作圖略),
∵、是以為直徑的半圓的兩條切線,
∴∠DBA=∠CAB=90°,
∵弧AE的度數(shù)為140,即∠AOE=140°,
∵OA=OE,
∴∠EAO=20°,
在直角三角形ABD中,∠D=70°,
(2)∵AB為直徑,
∴∠AEB=90°,(直徑所對圓周角是90°)
∵,
∴∠CEF=90°,
∴∠CEA=∠FEB(同角的余角相等)
又∵∠CAE+∠EAF=∠EBA+∠EAF
∴∠CAE=∠EBA(同角的余角相等)
∴(有兩個角對應相等的三角形是相似三角形)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連接AD.
(1)求證:AD=AN;
(2)若AB=8,ON=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩座城市之間有一條高速公路,甲、乙兩輛汽車同時分別從這條路兩端的入口處駛入,并始終在高速公路上正常行駛.甲車駛往B城,乙車駛往A城,甲車在行駛過程中速度始終不變.甲車距B城高速公路入口處的距離y(千米)與行駛時間x(時)之間的關系如圖.
(1)求y關于x的表達式;
(2)已知乙車以60千米/時的速度勻速行駛,設行駛過程中,兩車相距的路程為s(千米).請直接寫出s關于x的表達式;
(3)當乙車按(2)中的狀態(tài)行駛與甲車相遇后,速度隨即改為a(千米/時)并保持勻速行駛,結果比甲車晚40分鐘到達終點,求乙車變化后的速度a.在下圖中畫出乙車離開B城高速公路入口處的距離y(千米)與行駛時間x(時)之間的函數(shù)圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)以下列正方形網(wǎng)絡的交點為頂點,分別畫出兩個相似比不為1的相似三角形,使它們:①都是直角三角形;②都是銳角三角形;③都是鈍角三角形.
(2)如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,﹣1)、(2,1).
①以0點為位似中心在y軸的左側將△OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;
②分別寫出B、C兩點的對應點B′、C′的坐標;
③如果△OBC內部一點M的坐標為(x,y),寫出M的對應點M′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017湖北省鄂州市)小明想要測量學校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走3米到達A處,測得樹頂端E的仰角為30°,他又繼續(xù)走下臺階到達C處,測得樹的頂端E的仰角是60°,再繼續(xù)向前走到大樹底D處,測得食堂樓頂N的仰角為45°.已知A點離地面的高度AB=2米,∠BCA=30°,且B、C、D三點在同一直線上.
(1)求樹DE的高度;
(2)求食堂MN的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x -2mx(m為常數(shù)),當-1≤x≤2時,函數(shù)y的最小值為-2,則m的值是( )
A. B. C. 或 D. -或
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是矗立在高速公路地面上的交通警示牌,經測量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(參考數(shù)據(jù):=1.41,=1.73).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一筆直的海岸線l上有A、B兩個觀測站,C離海岸線l的距離(即CD的長)為2,從A測得船C在北偏東45°的方向,從B測得船C在北偏東22.5°的方向,則AB的長( )
A. 2 km B. (2+)km C. (4-2) km D. (4-) km
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com