【題目】如圖,拋物線y=ax2+bx+與直線AB交于點A(﹣1,0),B(4,),點D是拋物線A、B兩點間部分上的一個動點(不與點A、B重合),直線CD與y軸平行,交直線AB于點C,連接AD,BD.
(1)求拋物線的表達式;
(2)設點D的橫坐標為m,△ADB的面積為S,求S關于m的函數(shù)關系式,并求出當S取最大值時的點C的坐標.
【答案】(1)y=﹣x2+2x+(2) C( , )
【解析】分析: (1)將點A、B的坐標代入拋物線的解析式,求得a、b的值,從而得到拋物線的解析式;
(2)設直線AB為:y=kx+b.將A、B的坐標代入可得到k,b的方程組,從而可求得k,b于是得到直線AB的解析式,記CD與x軸的交點坐標為E.過點B作BF⊥DC,垂足為F.設D(m,﹣m2+2m+)則C(m,m+),依據(jù)三角形的面積公式可得到S與m的函數(shù)關系式,接下來由拋物線的對稱軸方程,可求得m的值,于是可得到點C的坐標.
詳解:
(1)∵由題意得,解得:,
∴y=﹣x2+2x+.
(2)設直線AB為:y=kx+b.則,解得
直線AB的解析式為y=+.
如圖所示:記CD與x軸的交點坐標為E.過點B作BF⊥DC,垂足為F.
設D(m,﹣m2+2m+)則C(m,m+).
∵CD=(﹣m2+2m+)﹣(m+)=m2+m+2,
∴S=AEDC+CDBF=CD(AE+BF)=DC=m2+m+5.
∴S=m2+m+5.
∵﹣<0,
∴當m=時,S有最大值.
∴當m=時,m+=×+=.
∴點C(,).
點睛: 本題主要考查的是二次函數(shù)的綜合應用,解答本題主要應用了待定系數(shù)法求一次函數(shù)、二次函數(shù)的解析式、三角形的面積公式、二次函數(shù)的性質(zhì),用含m的式子表示出CD的長,從而得到S與m的關系式是解題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分線分別交AC、AD于E、F兩點,M為EF的中點,延長AM交BC于點N,連接DM,下列結論:①AE=AF;②DF=DN;③AE=CN;④△AMD和△DMN的面積相等,其中錯誤的結論個數(shù)是( )
A.3個B.2個C.1個D.0個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD=2,∠A=60°,BC=,CD=3.
(1)求∠ADC的度數(shù);
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分線,且交AD于P,如果AP=2,則P點到AB的距離為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一張三角形紙片如圖甲,其中將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為如圖乙再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的方程|x2﹣x|﹣a=0,給出下列四個結論:①存在實數(shù)a,使得方程恰有2個不同的實根; ②存在實數(shù)a,使得方程恰有3個不同的實根;③存在實數(shù)a,使得方程恰有4個不同的實根;④存在實數(shù)a,使得方程恰有6個不同的實根;其中正確的結論個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC 是等邊三角形,點 P 在△ABC 內(nèi),PA=2,將△PAB 繞點 A 逆時針旋轉(zhuǎn)得到△P1AC,則 P1P 的長等于( )
A. 2 B. C. D. 1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com