【題目】一位籃球運(yùn)動(dòng)員在距離籃圈中心水平距離4m處起跳投籃,球沿一條拋物線運(yùn)動(dòng),當(dāng)球運(yùn)動(dòng)的水平距離為2.5m時(shí),達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃框內(nèi).已知籃圈中心距離地面高度為3.05m,在如圖所示的平面直角坐標(biāo)系中,下列說法正確的是( 。
A. 此拋物線的解析式是y=﹣x2+3.5
B. 籃圈中心的坐標(biāo)是(4,3.05)
C. 此拋物線的頂點(diǎn)坐標(biāo)是(3.5,0)
D. 籃球出手時(shí)離地面的高度是2m
【答案】A
【解析】
A、設(shè)拋物線的表達(dá)式為y=ax2+3.5,依題意可知圖象經(jīng)過的坐標(biāo),由此可得a的值;B、根據(jù)函數(shù)圖象判斷;C、根據(jù)函數(shù)圖象判斷;D、設(shè)這次跳投時(shí),球出手處離地面hm,因?yàn)椋?/span>1)中求得y=﹣0.2x2+3.5,當(dāng)x=﹣2,5時(shí),即可求得結(jié)論.
解:A、∵拋物線的頂點(diǎn)坐標(biāo)為(0,3.5),
∴可設(shè)拋物線的函數(shù)關(guān)系式為y=ax2+3.5.
∵籃圈中心(1.5,3.05)在拋物線上,將它的坐標(biāo)代入上式,得 3.05=a×1.52+3.5,
∴a=﹣,
∴y=﹣x2+3.5.
故本選項(xiàng)正確;
B、由圖示知,籃圈中心的坐標(biāo)是(1.5,3.05),
故本選項(xiàng)錯(cuò)誤;
C、由圖示知,此拋物線的頂點(diǎn)坐標(biāo)是(0,3.5),
故本選項(xiàng)錯(cuò)誤;
D、設(shè)這次跳投時(shí),球出手處離地面hm,
因?yàn)椋?/span>1)中求得y=﹣0.2x2+3.5,
∴當(dāng)x=﹣2.5時(shí),
h=﹣0.2×(﹣2.5)2+3.5=2.25m.
∴這次跳投時(shí),球出手處離地面2.25m.
故本選項(xiàng)錯(cuò)誤.
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,以B為圓心,BC長為半徑畫弧,分別交AC、AB于D、E兩點(diǎn),并連接BD、DE,若∠A=30°,AB=AC,則∠BDE=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,E是AD的中點(diǎn),以點(diǎn)E直角頂點(diǎn)的直角三角形EFG的兩邊EF,EG分別過點(diǎn)B,C,∠F=30°.
(1)求證:BE=CE
(2)將△EFG繞點(diǎn)E按順時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時(shí)停止轉(zhuǎn)動(dòng).若EF,EG分別與AB,BC相交于點(diǎn)M,N.(如圖2)
①求證:△BEM≌△CEN;
②若AB=2,求△BMN面積的最大值;
③當(dāng)旋轉(zhuǎn)停止時(shí),點(diǎn)B恰好在FG上(如圖3),求sin∠EBG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了檢驗(yàn)教室里的矩形門框是否合格,某班的四個(gè)學(xué)習(xí)小組用三角板和細(xì)繩分別測得如下結(jié)果,其中不能判定門框是否合格的是( )
A. AB=CD,AD=BC,AC=BD B. AC=BD,∠B=∠C=90° C. AB=CD,∠B=∠C=90° D. AB=CD,AC=BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師買了一套帶有屋頂花園的住房,為了美化居住環(huán)境,張老師準(zhǔn)備用100元錢買4株月季花,2株黃果蘭種在花園中.已知3株月季花、4株黃果蘭共需158元,2株月季花、3株黃果蘭共需117元.問:張老師用100元錢能否買回他所需要的花卉?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DF∥AC,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2.求證:∠C=∠D.請你根據(jù)條件進(jìn)行推理,得出結(jié)論,并在括號內(nèi)注明原因.
證明:∵∠1=∠2(已知)
∠1=∠3,∠2=∠4(_______),
∴∠3=∠4(等量代換),
∴_____∥_____(_______),
∴∠C=∠ABD(_______),
∵DF∥AC(已知)
∴∠D=∠ABD(_______),
∴∠C=∠D(_______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方體紙盒的表面積為12cm2;
(1)求正方體的棱長;
(2)剪去蓋子后,插入一根長為5cm的細(xì)木棒,則細(xì)木棒露在外面的最短長度是多少?
(3)一只螞蟻在紙盒的表面由A爬到B,求螞蟻行走的最短路線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明想利用太陽光測量樓高,他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對面墻上有這棟樓的影子,針對這種情況,他設(shè)計(jì)了一種測量方案,具體測量情況如下:如示意圖,小明邊移動(dòng)邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時(shí),可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時(shí),測得小明落在墻上的影子高度CD=1.2m,CE=0.8m,CA=30m(點(diǎn)A、E、C在同一直線上).已知小明的身高EF是1.7m,請你幫小明求出樓高AB(結(jié)果精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,AH⊥BC,垂足為H,且AH=6 cm,點(diǎn)D是AB的中點(diǎn),點(diǎn)P是AH上一動(dòng)點(diǎn),則DP與BP和的最小值是__________cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com