【題目】某區(qū)在實(shí)施居民用水管理前,隨機(jī)調(diào)查了部分家庭(單位:戶)去年的月均用水量(單位:t),并將調(diào)查數(shù)據(jù)進(jìn)行整理,繪制出如下不完整的統(tǒng)計(jì)圖表:
月均用水量 | 頻數(shù) | 頻率 |
0≤x<5 | 6 | 12% |
5≤x<10 | 12 | 24% |
10≤x<15 |
| 32% |
15≤x<20 | 10 | 20% |
20≤x<25 | 4 |
|
25≤x<30 | 2 | 4% |
合計(jì) |
| 100% |
請(qǐng)解答以下問(wèn)題:
(I)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;
(Ⅱ)若該小區(qū)有2000戶家庭,根據(jù)此次隨機(jī)抽查的數(shù)據(jù)估計(jì),該小區(qū)月均用水量不低于20t的家庭有多少戶?
(Ⅲ)為了鼓勵(lì)節(jié)約用水,要確定一個(gè)月均用水量的標(biāo)準(zhǔn),超出該標(biāo)準(zhǔn)的部分按1.5倍價(jià)格收費(fèi),若要使68%的家庭水費(fèi)支出不受影響,那么,你覺(jué)得家庭月均用水量應(yīng)定為多少?
【答案】(I)詳見(jiàn)解析;(Ⅱ)240;(Ⅲ)15t.
【解析】
(Ⅰ)由0≤x<5的頻數(shù)及其頻率可得總戶數(shù),再根據(jù)頻率=頻數(shù)÷總戶數(shù)分別求解可得;
(Ⅱ)用總戶數(shù)乘以樣本中20≤x<25、25≤x<30的頻率和即可得;
(Ⅲ)前三個(gè)分組的頻率之和為12%+24%+32%=68%即可得.
(Ⅰ)∵被調(diào)查的總數(shù)量為6÷12%=50(戶),
∴10≤x<15的頻數(shù)為50×32%=16(戶)、20≤x<25的頻率為4÷50=0.08=8%,
補(bǔ)全圖形如下:
月均用水量 | 頻數(shù) | 頻率 |
0≤x<5 | 6 | 12% |
5≤x<10 | 12 | 24% |
10≤x<15 | 16 | 32% |
15≤x<20 | 10 | 20% |
20≤x<25 | 4 | 8% |
25≤x<30 | 2 | 4% |
合計(jì) | 50 | 100% |
(Ⅱ)估計(jì)該小區(qū)月均用水量不低于20t的家庭有2000×(8%+4%)=240戶;
(Ⅲ)∵前三個(gè)分組的頻率之和為12%+24%+32%=68%,
∴家庭月均用水量應(yīng)定為15t.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)45°后得到正方形.依此方式,繞點(diǎn)連續(xù)旋轉(zhuǎn)2020次,得到正方形,如果點(diǎn)的坐標(biāo)為,那么點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=-x+b與雙曲線分別相交于點(diǎn)A,B,C,D,已知點(diǎn)A的坐標(biāo)為(-1,4),且AB:CD=5:2,則m=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E為邊AD上的點(diǎn),點(diǎn)F在邊CD上,且CF=3FD,∠BEF=90°
(1)求證:△ABE∽△DEF;
(2)若AB=4,延長(zhǎng)EF交BC的延長(zhǎng)線于點(diǎn)G,求BG的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果一元二次方程滿足a+b+c=0,我們稱這個(gè)方程為“鳳凰”方程.已知是鳳凰方程,且有兩個(gè)相等的實(shí)數(shù)根,則下列正確的是( )
A.a=cB.a=bC.b=cD.a=b=c
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半圓D的直徑AB=4,線段OA=7,O為原點(diǎn),點(diǎn)B在數(shù)軸的正半軸上運(yùn)動(dòng),點(diǎn)B在數(shù)軸上所表示的數(shù)為m.
(1)當(dāng)半圓D與數(shù)軸相切時(shí),m= .
(2)半圓D與數(shù)軸有兩個(gè)公共點(diǎn),設(shè)另一個(gè)公共點(diǎn)是C.
①直接寫(xiě)出m的取值范圍是 .
②當(dāng)BC=2時(shí),求△AOB與半圓D的公共部分的面積.
(3)當(dāng)△AOB的內(nèi)心、外心與某一個(gè)頂點(diǎn)在同一條直線上時(shí),求tan∠AOB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某倉(cāng)儲(chǔ)中心有一個(gè)坡度為i=1:2的斜坡AB,頂部A處的高AC為4米,B、C在同一水平地面上,其橫截面如圖.
(1)求該斜坡的坡面AB的長(zhǎng)度;
(2)現(xiàn)有一個(gè)側(cè)面圖為矩形DEFG的長(zhǎng)方體貨柜,其中長(zhǎng)DE=2.5米,高EF=2米,該貨柜沿斜坡向下時(shí),點(diǎn)D離BC所在水平面的高度不斷變化,求當(dāng)BF=3.5米時(shí),點(diǎn)D離BC所在水平面的高度DH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知P(-5,m)和Q(3,m)是二次函數(shù)y=2x2+bx+1圖象上的兩點(diǎn).
(1)求b的值;
(2)將二次函數(shù)y=2x2+bx+1的圖象進(jìn)行一次平移,使圖象經(jīng)過(guò)原點(diǎn).(寫(xiě)出一種即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com