【題目】某倉儲中心有一個坡度為i=1:2的斜坡AB,頂部A處的高AC為4米,B、C在同一水平地面上,其橫截面如圖.
(1)求該斜坡的坡面AB的長度;
(2)現(xiàn)有一個側(cè)面圖為矩形DEFG的長方體貨柜,其中長DE=2.5米,高EF=2米,該貨柜沿斜坡向下時,點(diǎn)D離BC所在水平面的高度不斷變化,求當(dāng)BF=3.5米時,點(diǎn)D離BC所在水平面的高度DH.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合與實(shí)踐﹣﹣探究圖形中角之間的等量關(guān)系及相關(guān)問題.
問題情境:
正方形ABCD中,點(diǎn)P是射線DB上的一個動點(diǎn),過點(diǎn)C作CE⊥AP于點(diǎn)E,點(diǎn)Q與點(diǎn)P關(guān)于點(diǎn)E對稱,連接CQ,設(shè)∠DAP=α(0°<α<135°),∠QCE=β.
初步探究:
(1)如圖1,為探究α與β的關(guān)系,勤思小組的同學(xué)畫出了0°<α<45°時的情形,射線AP與邊CD交于點(diǎn)F.他們得出此時α與β的關(guān)系是β=2α.借助這一結(jié)論可得當(dāng)點(diǎn)Q恰好落在線段BC的延長線上(如圖2)時,α= °,β= °;
深入探究:
(2)敏學(xué)小組的同學(xué)畫出45°<α<90°時的圖形如圖3,射線AP與邊BC交于點(diǎn)G.請猜想此時α與β之間的等量關(guān)系,并證明結(jié)論;
拓展延伸:
(3)請你借助圖4進(jìn)一步探究:①當(dāng)90°<α<135°時,α與β之間的等量關(guān)系為 ;
②已知正方形邊長為2,在點(diǎn)P運(yùn)動過程中,當(dāng)α=β時,PQ的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)在實(shí)施居民用水管理前,隨機(jī)調(diào)查了部分家庭(單位:戶)去年的月均用水量(單位:t),并將調(diào)查數(shù)據(jù)進(jìn)行整理,繪制出如下不完整的統(tǒng)計圖表:
月均用水量 | 頻數(shù) | 頻率 |
0≤x<5 | 6 | 12% |
5≤x<10 | 12 | 24% |
10≤x<15 |
| 32% |
15≤x<20 | 10 | 20% |
20≤x<25 | 4 |
|
25≤x<30 | 2 | 4% |
合計 |
| 100% |
請解答以下問題:
(I)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;
(Ⅱ)若該小區(qū)有2000戶家庭,根據(jù)此次隨機(jī)抽查的數(shù)據(jù)估計,該小區(qū)月均用水量不低于20t的家庭有多少戶?
(Ⅲ)為了鼓勵節(jié)約用水,要確定一個月均用水量的標(biāo)準(zhǔn),超出該標(biāo)準(zhǔn)的部分按1.5倍價格收費(fèi),若要使68%的家庭水費(fèi)支出不受影響,那么,你覺得家庭月均用水量應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC=5, AB=6, 點(diǎn)D為AC上一點(diǎn),作DE//AB交BC于點(diǎn)E,點(diǎn)C關(guān)于DE的對稱點(diǎn)為點(diǎn)O,以OA為半徑作⊙O恰好經(jīng)過點(diǎn)C,并交直線DE于點(diǎn)M,N.則MN的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程mx2-2mx+m-2=0.
(1)若方程有兩個不等實(shí)數(shù)根,求m的取值范圍;
(2)若方程的兩實(shí)數(shù)根為x1,x2,且|x1-x2|=1,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,點(diǎn)是上任意一點(diǎn),過點(diǎn)作交于點(diǎn),連接并延長交的延長線于點(diǎn),則下列結(jié)論中錯誤的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形為的內(nèi)接四邊形,直徑與對角線相交于點(diǎn),作于,與過點(diǎn)的直線相交于點(diǎn),.
(1)求證:為的切線;
(2)若平分,求證:;
(3)在(2)的條件下,為的中點(diǎn),連接,若,的半徑為,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于兩點(diǎn),與軸交于點(diǎn),連接.點(diǎn)是第一象限內(nèi)拋物線上的一個動點(diǎn),點(diǎn)的橫坐標(biāo)為.
(1)求此拋物線的表達(dá)式;
(2)過點(diǎn)作軸,垂足為點(diǎn),交于點(diǎn).試探究點(diǎn)P在運(yùn)動過程中,是否存在這樣的點(diǎn),使得以為頂點(diǎn)的三角形是等腰三角形.若存在,請求出此時點(diǎn)的坐標(biāo),若不存在,請說明理由;
(3)過點(diǎn)作,垂足為點(diǎn).請用含的代數(shù)式表示線段的長,并求出當(dāng)為何值時有最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是△ABC的邊AB上一點(diǎn),⊙O與邊AC相切于點(diǎn)E,與邊BC,AB分別相交于點(diǎn)D,F(xiàn),且DE=EF.
(1)求證:∠C=90°;
(2)當(dāng)BC=3,sinA=時,求AF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com