【題目】已知,平分,平分.
(1)求的度數(shù);
(2)如圖2,過(guò)點(diǎn)的直線(xiàn)交射線(xiàn)于點(diǎn),交射線(xiàn)于點(diǎn),求證:;
(3)如圖3,過(guò)點(diǎn)的直線(xiàn)交射線(xiàn)的反向延長(zhǎng)線(xiàn)于點(diǎn),交射線(xiàn)于點(diǎn),,,,求的面積.
【答案】(1)90°;(2)見(jiàn)解析;(3)8
【解析】
(1)根據(jù)平行線(xiàn)的性質(zhì)得到∠BAM+∠ABN=180°,根據(jù)角平分線(xiàn)的定義得到∠BAE=∠BAM,∠ABE=∠ABN,于是得到結(jié)論;
(2)在AB上截取AF=AC,連接EF,根據(jù)全等三角形的性質(zhì)得到∠AEC=∠AEF,BF=BD,等量代換即可得到結(jié)論;
(3)延長(zhǎng)AE交BD于F,根據(jù)等腰三角形的性質(zhì)得到AB=BF=5,AE=EF,根據(jù)全等三角形的性質(zhì)得到DF=AC=3,設(shè)S△BEF=S△ABE=5x,S△DEF=S△ACE=3x,根據(jù)S△ABE-S△ACE=2,即可得到結(jié)論.
解:(1)∵AM∥BN,
∴∠BAM+∠ABN=180°,
∵AE平分∠BAM,BE平分∠ABN,
∴∠BAE=∠BAM,∠ABE=∠ABN,
∴∠BAE+∠ABE=(∠BAM+∠ABN)=90°,
∴∠AEB=90°;
(2)在AB上截取AF=AC,連接EF,
在△ACE與△AFE中,
,
∴△ACE≌△AFE,
∴∠AEC=∠AEF,
∴∠AEB=90°,
∴∠AEF+∠BEF=∠AEC+∠BED=90°,
∴∠FEB=∠DEB,
在△BFE與△BDE中,
,
∴△BFE≌△BDE(ASA),
∴BF=BD,
∵AB=AF+BF,
∴AC+BD=AB;
(3)延長(zhǎng)AE交BD于F,
∵∠AEB=90°,
∴BE⊥CD,
BE平分∠ABN,
∴AB=BF=5,AE=EF,
∵AM∥BN,
∴∠C=∠EDF,
在△ACE與△FDE中,
,
∴△ACE≌△FDE(AAS),
∴DF=AC=3,
∵BF=5,
∴設(shè)S△BEF=S△ABE=5x,S△DEF=S△ACE=3x,
∵S△ABE-S△ACE=2,
∴5x-3x=2,
∴x=1,
∴△BDE的面積=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=﹣x2﹣2x+m+1與x軸交于A(x1 , 0)、B(x2 , 0)兩點(diǎn),且x1<0,x2>0,與y軸交于點(diǎn)C,頂點(diǎn)為P.(提示:若x1 , x2是一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)實(shí)根,則x1+x2=﹣ ,x1x2= )
(1)求m的取值范圍;
(2)若OA=3OB,求拋物線(xiàn)的解析式;
(3)在(2)中拋物線(xiàn)的對(duì)稱(chēng)軸PD上,存在點(diǎn)Q使得△BQC的周長(zhǎng)最短,試求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,半徑OD⊥AC于點(diǎn)E,過(guò)點(diǎn)D的切線(xiàn)與BA延長(zhǎng)線(xiàn)交于點(diǎn)F.
(1)求證:∠CDB=∠BFD;
(2)若AB=10,AC=8,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小穎和小紅兩位同學(xué)在學(xué)習(xí)“概率”時(shí),做擲骰子(質(zhì)地均勻的正方體)實(shí)驗(yàn).
(1)他們?cè)谝淮螌?shí)驗(yàn)中共做了次試驗(yàn),試驗(yàn)的結(jié)果如下:
朝上的點(diǎn)數(shù) | ||||||
出現(xiàn)的次數(shù) |
①填空:此次實(shí)驗(yàn)中“點(diǎn)朝上”的頻率為________;
②小紅說(shuō):“根據(jù)實(shí)驗(yàn),出現(xiàn)點(diǎn)朝上的概率最。”她的說(shuō)法正確嗎?為什么?
(2)小穎和小紅在實(shí)驗(yàn)中如果各擲一枚骰子,那么兩枚骰子朝上的點(diǎn)數(shù)之和為多少時(shí)的概率最大?試用列表或畫(huà)樹(shù)狀圖的方法加以說(shuō)明,并求出其最大概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線(xiàn)上,且與點(diǎn)C關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng),已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫(xiě)出滿(mǎn)足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程(2m+1)x2+4mx+2m﹣3=0
(Ⅰ)當(dāng)m=時(shí),求方程的實(shí)數(shù)根;
(Ⅱ)若方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖下列條件①、;②;③、、;④、.一定能判定四邊形為菱形的有( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小華有一個(gè)容最為8()的盤(pán),盤(pán)中已經(jīng)存儲(chǔ)了一個(gè)視頻文件,其余空間都用來(lái)存儲(chǔ)照片,且每張照片占用的內(nèi)存容量均相同,已知剩余可用空間與圖片數(shù)量(張)滿(mǎn)足一次函數(shù)關(guān)系,對(duì)應(yīng)數(shù)據(jù)如下表:
圖片數(shù)量(張) | 100 | 150 |
剩余可用空間 | 5700 | 5550 |
(1)求出與之間的關(guān)系式,并求出盤(pán)中視頻文件占用的內(nèi)存容量;
(2)若盤(pán)中已經(jīng)存入1280張照片,那么最多還能存入多少?gòu)堈掌?/span>?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:40372﹣4×2018×2019;
(2)將邊長(zhǎng)為1的一個(gè)正方形和一個(gè)底邊為1的等腰三角形如圖擺放,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com