【題目】如圖1,E為矩形ABCD邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B沿折線BE﹣ED﹣DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q從點(diǎn)B沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,它們運(yùn)動(dòng)的速度都是1cm/s.若點(diǎn)P,Q同時(shí)開(kāi)始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)關(guān)系圖象如圖2,有下列四個(gè)結(jié)論:①AE=6cm;②sin∠EBC= ;③當(dāng)0<t≤10時(shí),y= t2; ④當(dāng)t=12s時(shí),△PBQ是等腰三角形.其中正確結(jié)論的序號(hào)是 .
【答案】①②③
【解析】解:(1)分析函數(shù)圖象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm,故①正確;(2)如答圖1所示,連接EC,過(guò)點(diǎn)E作EF⊥BC于點(diǎn)F,
由函數(shù)圖象可知,BC=BE=10cm,S△BEC=40= BCEF= ×10×EF,∴EF=8,∴sin∠EBC= ,故②正確;(3)如答圖2所示,過(guò)點(diǎn)P作PG⊥BQ于點(diǎn)G,∵BQ=BP=t,
∴y=S△BPQ= BQPG= BQBPsin∠EBC= tt = t2 . 故③正確;(4)結(jié)論D錯(cuò)誤.理由如下:當(dāng)t=12s時(shí),點(diǎn)Q與點(diǎn)C重合,點(diǎn)P運(yùn)動(dòng)到ED的中點(diǎn),設(shè)為N,如答圖3所示,連接NB,NC.此時(shí)AN=8,ND=2,由勾股定理求得:NB=8 ,NC=2 ,∵BC=10,∴△BCN不是等腰三角形,即此時(shí)△PBQ不是等腰三角形.
故④錯(cuò)誤;
所以答案是:①②③.
【考點(diǎn)精析】本題主要考查了矩形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,0),B(0,4),作△BOC,使△BOC與△ABO全等,則點(diǎn)C坐標(biāo)為________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中有A(-2,1),B(3,1),C(2,3)三點(diǎn).請(qǐng)回答下列問(wèn)題:
(1)在坐標(biāo)系內(nèi)描出點(diǎn)A,B,C的位置.
(2)求出以A,B,C三點(diǎn)為頂點(diǎn)的三角形的面積.
(3)在y軸上是否存在點(diǎn)P,使以A,B,P三點(diǎn)為頂點(diǎn)的三角形的面積為10?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A(﹣1,0),B(4,0),C(0,2)三點(diǎn).
(1)求這條拋物線的解析式;
(2)E為拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)E,使以A、B、E為頂點(diǎn)的三角形與△COB相似?若存在,試求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若將直線BC平移,使其經(jīng)過(guò)點(diǎn)A,且與拋物線相交于點(diǎn)D,連接BD,試求出∠BDA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABD和△AEC中,AD=AB,AE=AC,∠DAB=∠EAC=60°,CD、 BE相交于點(diǎn)P.
(1)用全等三角形判定方法證明:BE=DC
(2)求∠BPC的度數(shù);
(3)在(2)的基礎(chǔ)上,經(jīng)過(guò)深入探究后發(fā)現(xiàn):射線AP平分∠BPC,請(qǐng)判斷你的發(fā)現(xiàn)是否正確,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線BD的垂直平分線MN與AD相交于點(diǎn)M,與BD相交于點(diǎn)O,與BC相交于點(diǎn)N,連接BM、DN.
(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求菱形BMDN的面積和對(duì)角線MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量某交通路口設(shè)立的路況顯示牌的立桿AB的高度,在D處用高1.2m的測(cè)角儀CD,測(cè)得最高點(diǎn)A的仰角為32°,已知觀測(cè)點(diǎn)D到立桿AB的距離DB為3.8m,求立桿AB的高度.(結(jié)果精確到0.1m)
【參考數(shù)據(jù):sin32°=0.53,cos32°=0.85,tan32°=0.62】
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OE平分∠AOB,BD⊥OA于點(diǎn)D,AC⊥BO于點(diǎn)C,則圖中全等三角形共有_______對(duì).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com