【題目】ABC的三個(gè)頂點(diǎn)的縱坐標(biāo)都乘以-1,橫坐標(biāo)不變,則所得圖形與原圖形的關(guān)系是(

A. 關(guān)于x軸對稱 B. 關(guān)于y軸對稱

C. 關(guān)于原點(diǎn)對稱 D. 將圖形向x軸的負(fù)方向移動了1個(gè)單位

【答案】A

【解析】試題分析:根據(jù)題意可得新的坐標(biāo)都是原坐標(biāo)的相反數(shù),則所得圖形與原圖形的關(guān)系是關(guān)于原點(diǎn)對稱.

解:△ABC的三個(gè)頂點(diǎn)坐標(biāo)的橫坐標(biāo)和縱坐標(biāo)都乘以﹣1,則所得新的坐標(biāo)都是原坐標(biāo)的相反數(shù),則所得圖形與原圖形的關(guān)系是關(guān)于原點(diǎn)對稱,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列哪種四邊形的兩條對角線互相垂直平分且相等( 。

A. 矩形 B. 菱形 C. 平行四邊形 D. 正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知任意三角形的三邊長,如何求三角形面積?

古希臘的幾何學(xué)家海倫解決了這個(gè)問題,在他的著作《度量論》一書中給出了計(jì)算公式﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長,p=,S為三角形的面積),并給出了證明

例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計(jì)算:

∵a=3,b=4,c=5

∴p==6

∴S===6

事實(shí)上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時(shí)期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.

如圖,在△ABC中,BC=5,AC=6,AB=9

(1)用海倫公式求△ABC的面積;

(2)求△ABC的內(nèi)切圓半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果直線ab,bc,那么直線ac的位置關(guān)系是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知CF⊥ABF,ED⊥ABD,∠1=∠2,求證:FG∥BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是 (

A. 零表示什么也沒有

B. 一場比賽贏4個(gè)球得+4分,3分表示輸了3個(gè)球

C. 7沒有符號

D. 零既不是正數(shù),也不是負(fù)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】英國曼徹斯特大學(xué)的兩位科學(xué)家因?yàn)槌晒Φ貜氖蟹蛛x出石墨烯,榮獲了諾貝爾物理學(xué)獎,石墨烯目前是世界上最薄也是最堅(jiān)硬的納米材料,同時(shí)還是導(dǎo)電性最好的材料,其原理厚度僅0.00000000034米,將0.00000000034這個(gè)數(shù)用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+c與x軸交于A、B兩點(diǎn),頂點(diǎn)為C,點(diǎn)P為拋物線上,且位于x軸下方

1如圖1,若P1,-3、B4,0,

求該拋物線的解析式;

若D是拋物線上一點(diǎn),滿足DPO=POB,求點(diǎn)D的坐標(biāo);

2 如圖2,已知直線PA、PB與y軸分別交于E、F兩點(diǎn)當(dāng)點(diǎn)P運(yùn)動時(shí),是否為定值?若是,試求出該定值;若不是,請說明理由

查看答案和解析>>

同步練習(xí)冊答案