【題目】某市政府規(guī)定:若本市企業(yè)按生產(chǎn)成本價提供產(chǎn)品給大學(xué)生銷售,則政府給該企業(yè)補償補償額批發(fā)價生產(chǎn)成本價銷售量大學(xué)生小明投資銷售本市企業(yè)生產(chǎn)的一種新型節(jié)能燈,調(diào)查發(fā)現(xiàn),每月銷售量與銷售單價之間的關(guān)系近似滿足一次函數(shù):已知這種節(jié)能燈批發(fā)價為每件12元,設(shè)它的生產(chǎn)成本價為每件m

(1)當(dāng)時.

①若第一個月的銷售單價定為20元,則第一個月政府要給該企業(yè)補償多少元?

②設(shè)所獲得的利潤為,當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?

(2)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得超過30今年三月小明獲得贏利,此時政府給該企業(yè)補償了920元,若m,x都是正整數(shù),求m的值.

【答案】28.

【解析】

代入求出銷售的件數(shù),然后求出政府承擔(dān)的成本價與出廠價之間的差價;由總利潤銷售量每件純賺利潤,得,把函數(shù)轉(zhuǎn)化成頂點坐標(biāo)式,根據(jù)二次函數(shù)的性質(zhì)求出最大利潤;

根據(jù)題意列出關(guān)于mx的方程,再從兩個未知數(shù)取值條件求得結(jié)果.

當(dāng)時,,

元,

答:第一個月政府要給該企業(yè)補償600元;

由題意得,

,

當(dāng)時,w有最大值4000元.

答:當(dāng)銷售單價定為30元時,每月可獲得最大利潤4000元;

由題意得,,

,

,x為整數(shù),

,且為整數(shù),

,且m為整數(shù),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y=和y=﹣的圖象分別是l1和l2.設(shè)點P在l1上,PC⊥x軸,垂足為C,交l2于點A,PD⊥y軸,垂足為D,交l2于點B,則三角形PAB的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了推動課堂教學(xué)改革,打造高效課堂,我市某中學(xué)對該校八年級部分學(xué)生就一學(xué)期以來分組合作學(xué)習(xí)方式的支持程度進(jìn)行調(diào)查,統(tǒng)計情況如圖,請根據(jù)圖中提供的信息,回答下列問題:

1)本次調(diào)查的八年級部分學(xué)生共有______名;請補全條形統(tǒng)計圖;

2)若該校八年級學(xué)生共有540人,請你估計該校八年級有多少名學(xué)生支持分組合作學(xué)習(xí)方式(含非常喜歡喜歡兩種情況的學(xué)生)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列兩個等式:2=2×+1,5=5×+1,給出定義如下:我們稱使等式abab1的成立的一對有理數(shù)a,b共生有理數(shù)對,記為(a,b),如:數(shù)對(2,),(5,),都是共生有理數(shù)對

(1)判斷數(shù)對(2,1),(3,)是不是共生有理數(shù)對,寫出過程;

(2)(a,3)共生有理數(shù)對,求a的值;

(3)(m,n)共生有理數(shù)對”,(n,m)“共生有理數(shù)對”(不是”);說明理由;

(4)請再寫出一對符合條件的共生有理數(shù)對(注意:不能與題目中已有的共生有理數(shù)對重復(fù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線上有三點、,滿足, , ,點從點出發(fā),沿方向以秒的速度勻速運動,點從點出發(fā)在線段上向點勻速運動,兩點同時出發(fā),當(dāng)點運動到點時,點、停止運動.

(1)若點運動速度為秒,經(jīng)過多長時間兩點相遇?

(2)當(dāng)在線段上且時,點運動到的位置恰好是線段的三等分點,

求點的運動速度;

(3)當(dāng)點運動到線段上時,分別取的中點、,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖O為直線AB上一點,∠AOC50°,OD平分∠AOC,∠DOE90°

1)求∠BOD的度數(shù);

2)試判斷OE是否平分∠BOC,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系中的位置如圖所示.

1)作出△ABC關(guān)于軸對稱的△A1B1C1,并寫出△A1B1C1各頂點的坐標(biāo);

2)將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標(biāo);

3)觀察△A1B1C和△A2B2C2,它們是否關(guān)于某直線對稱?若是,請用實線條畫出對稱軸。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀并解決其后的問題:我們將四個有理數(shù)、、寫成 的形式,稱它為由有理數(shù)、組成的二階矩陣,稱、、為構(gòu)成這個矩陣的元素,如由有理數(shù)、2、3、組成的二階矩陣是 ,2、3、是這個矩陣的元素,當(dāng)且僅當(dāng)兩個矩陣相同位置上的元素相等時,我們稱這兩個二階矩陣相等,下面是兩個二階矩陣的加法運算過程:① + = = ,② + = =

1)通過觀察上述例子中矩陣加法運算的規(guī)律,可歸納得二階矩陣的加法運算法則是:兩個二階矩陣相加, .

2)①計算: + ;

②若 + = ,求的值;

3)若記A= ,B= ,試依據(jù)二階矩陣的加法法則說明A+B=B+A成立

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(﹣3,m+8),B(n,﹣6)兩點.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求AOB的面積.

查看答案和解析>>

同步練習(xí)冊答案