【題目】已知Rt△ABC中,AC=4,BC=3,∠ACB=90°,以AC為一邊在Rt△ABC外部作等腰直角三角形ACD,則線段BD的長為_____.
【答案】7或或
【解析】
分三種情形討論:(1)如圖1中,以點(diǎn)C所在頂點(diǎn)為直角時(shí);(2)如圖2中,以點(diǎn)D所在頂點(diǎn)為直角時(shí);(3)如圖3中,以點(diǎn)A所在頂點(diǎn)為直角時(shí).
(1)如圖1中,以點(diǎn)C所在頂點(diǎn)為直角時(shí).
∵AC=CD=4,BC=3,∴BD=CD+BC=7;
(2)如圖2中,以點(diǎn)D所在頂點(diǎn)為直角時(shí),作DE⊥BC與E,連接BD.
在Rt△BDE中DE=2,BE=5,∴BD;
(3)如圖3中,以點(diǎn)A所在頂點(diǎn)為直角時(shí),作DE⊥BC于E,
在Rt△BDE中,DE=4.BE=7,∴BD.
故答案為:7或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O為AC中點(diǎn),若點(diǎn)D在直線BC上運(yùn)動(dòng),連接OE,則在點(diǎn)D運(yùn)動(dòng)過程中,線段OE的最小值是為( 。
A.B.C.1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是胡老師帶領(lǐng)學(xué)生,探究SSA是否能判定兩個(gè)三角形全等的過程,請(qǐng)完成下列填空.
如圖:已知,在和中,________,(公共邊),,( ),,( ),則和滿足兩邊及一邊的對(duì)角分別相等,即滿足________________,很顯然:________,(填“全等于”或“不全等于”)下結(jié)論:SSA________(填“能”或“不能”)判定兩個(gè)三角形全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分線,DE⊥BC,垂足為D.
(1)請(qǐng)你寫出圖中所有的等腰三角形;
(2)請(qǐng)你判斷AD與BE垂直嗎?并說明理由.
(3)如果BC=10,求AB+AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)進(jìn)行長跑訓(xùn)練,甲和乙所跑的路程S(單位:米)與所用時(shí)間t(單位:秒)之間的函數(shù)圖象分別為線段OA和折線OBCD.則下列說法正確的是( )
A. 兩人從起跑線同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn)
B. 跑步過程中,兩人相遇一次
C. 起跑后160秒時(shí),甲、乙兩人相距最遠(yuǎn)
D. 乙在跑前300米時(shí),速度最慢
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著中國傳統(tǒng)節(jié)日“端午節(jié)”的臨近,東方紅商場(chǎng)決定開展“歡度端午,回饋顧客”的讓利促銷活動(dòng),對(duì)部分品牌粽子進(jìn)行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?
(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時(shí),若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖a是一個(gè)長為2m,寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖b的形狀,拼成一個(gè)正方形.
(1)圖b中的陰影部分面積為 ;
觀察圖b,請(qǐng)你寫出三個(gè)代數(shù)式,,mn之間的等量關(guān)系是 ;
(3)若x+y=﹣6,xy=2.75,利用提供的等量關(guān)系計(jì)算:x﹣y= ;
(4)實(shí)際上有許多代數(shù)恒等式可以用圖形的面積來表示,如圖C,它表示了2+3mn+=(m+n)(2m+n),試畫出一個(gè)幾何圖形的面積是+4ab+3,并能利用這個(gè)圖形將+4ab+3進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com