【題目】如圖,等邊的邊長為10,點(diǎn),,分別在三邊、、上,且,,,則的長為______.
【答案】
【解析】
根據(jù)等腰三角形的性質(zhì)得到∠A=∠B=60°,∠DEF=60°,根據(jù)相似三角形的性質(zhì)得到BE=2AD=6,AE=10-6=4,過E作EG⊥BF于G,解直角三角形得到BG=3,EG=,求得FG=5,根據(jù)勾股定理得到=,所以;
如圖,
∵△ABC是等邊三角形,
∴∠A=∠B=60°,
∵∠DEF=60°,
∴∠ADE=180°60°∠1,
∠2=180°∠160°,
∴∠ADE=∠2,
∴△ADE∽△BEF,
∴,
∵DF⊥DE,∠DEF=60°,
∴是直角三角形,∠EFD=30°,
∴,
∴BE=2AD=6,
∴AE=10-6=4,
過E作EG⊥BF于G,
∵∠B=60°,BE=6,
∴BG=,,
∴FG=5,
∵,
∴=,
∴;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2-3與y2=(x-3)2+1交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)論:①無論x取何值,y2的值總是正數(shù);②a=1;③當(dāng)x=0時,y2-y1=4;④2AB=3AC;其中正確結(jié)論是( 。
A.①②B.②③C.③④D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校為了開闊學(xué)生的視野,積極組織學(xué)生參加校外拓展活動,現(xiàn)隨機(jī)抽取我校的部分學(xué)生,調(diào)查他們最喜歡去的地方(A:方特,B:世界之窗,C:韶山,D:其他)進(jìn)行數(shù)據(jù)統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖(a),(b),請問:
(1)我校共調(diào)查了 名學(xué)生;
(2)將兩幅統(tǒng)計圖中不完整的部分補(bǔ)充完整;
(3)若我校共有學(xué)生6000人,請估計我校最喜歡去韶山的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,點(diǎn)F在BC邊上,過A,B,F三點(diǎn)的⊙O交AC于另一點(diǎn)D,作直徑AE,連結(jié)EF并延長交AC于點(diǎn)G,連結(jié)BE,BD,四邊形BDGE是平行四邊形.
(1)求證:AB=BF.
(2)當(dāng)F為BC的中點(diǎn),且AC=3時,求⊙O的直徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)畢業(yè)生響應(yīng)國家自主創(chuàng)業(yè)的號召,投資開辦了一個裝飾品商店,某種商品每件的進(jìn)價為20元,現(xiàn)在售價為每件40元,每周可賣出150件,市場調(diào)查發(fā)現(xiàn):如果每件的售價每降價1元(售價不低于20元),那么每周多賣出25件,設(shè)每件商品降價元,每周的利潤為元.
(1)請寫出利潤與售價之間的函數(shù)關(guān)系式.
(2)當(dāng)售價為多少元時,利潤可達(dá)4000元?
(3)應(yīng)如何定價才能使利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知△ABC與△CDA關(guān)于點(diǎn)O對稱,過O任作直線EF分別交AD、BC于點(diǎn)E、F,下面的結(jié)論:
①點(diǎn)E和點(diǎn)F,點(diǎn)B和點(diǎn)D是關(guān)于中心O對稱點(diǎn);
②直線BD必經(jīng)過點(diǎn)O;
③四邊形DEOC與四邊形BFOA的面積必相等;
④△AOE與△COF成中心對稱.
其中正確的個數(shù)為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn)在的左側(cè)),與軸交于點(diǎn),點(diǎn)與關(guān)于拋物線的對稱軸對稱.
(1)求拋物線的解析式及點(diǎn)的坐標(biāo);
(2)點(diǎn)是拋物線上的一點(diǎn),當(dāng)的面積是8,求出點(diǎn)的坐標(biāo);
(3)過直線下方的拋物線上一點(diǎn)作軸的平行線,與直線交于點(diǎn),已知點(diǎn)的橫坐標(biāo)是,試用含的式子表示的長及△ADM的面積,并求當(dāng)的長最大時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】韜韜想在春節(jié)期間去外地過年,爸爸對韜韜說:你從背面朝上且相同,正面分別寫有1、2、3的三張卡片中隨機(jī)摸出一張卡片不放回,然后再隨機(jī)摸出另一張卡片,若兩次摸出的數(shù)字之和等于4,則滿足你的愿望.
(1)采用畫樹狀圖法或列表法列出兩次摸出卡片的所有可能結(jié)果;
(2)韜韜實(shí)現(xiàn)愿望的概率有多大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com