【題目】已知:如圖,拋物線y=ax2﹣3ax+c(a≠0)與y軸交于點C(0,﹣4)與x軸交于點A.B,點A的坐標為(4,0).
(1)求該拋物線的解析式.
(2)點D是線段AB上的動點,過點D作DE∥AC,交BC于點E,連接CD.當△CDE的面積最大時,求點D的坐標;
(3)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點Q(2,0).問:是否存在這樣的直線l,使得△OQF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
【答案】(1)y=x2-3x-4;(2);(3),,,
【解析】
(1)把點A、C代入拋物線解析式,利用待定系數(shù)法求二次函數(shù)解析式解答;
(2)設(shè)點D坐標為(m,0),過點E作EG⊥x軸于G,令y=0求出點B的坐標,再表示出BD的長,然后根據(jù)△EBD和△BAC相似,利用相似三角形對應(yīng)高的比等于相似比列式表示出EG,再根據(jù)S△CDE=S△BCDS△BED列式整理即可得解,再根據(jù)二次函數(shù)的最值問題解答;
(3)分①QO=QF時,先求出∠OAC=45°,再根據(jù)等邊對等角可得∠QFA=45°,然后求出∠AQF=90°,從而得到點F的坐標,再根據(jù)點P、F的縱坐標相同,利用二次函數(shù)解析式求解;②QF=OF時,過點F作FH⊥x軸于H,根據(jù)等腰三角形三線合一的性質(zhì)可得OH=OQ=1,再求出HF=AH,然后寫出點F的坐標,根據(jù)點P、F的縱坐標相同,利用二次函數(shù)解析式求解;③OQ=OF時,先求出點O到AC的距離,根據(jù)垂線段最短判斷出此時不存在直線l,使△OQF為等腰三角形;
解:(1)把點A(4,0)、C(0,﹣4)代入拋物線解析式y=ax2﹣3ax+c(a≠0)得:
,解得a=1,c=-4,
∴y=x2-3x-4
(2)設(shè)點D坐標為(m,0),過點E作EG⊥x軸于G,
當y=0時,x2-3x-4=0,解得:,
∴B(-1,0),AB=5,
∴BD=m+1,
∵ED∥AC
∴△BDE∽△BAC,
∴,即,
∴,
∵S△CDE=S△BCDS△BED,
即S△CDE=,
∵,
∴當時,△CDE的面積最大,
∴
(3)存在,
①當QO=QF時,
∵A(4,0),Q(2,0)
∴AQ=OQ=QF=2,
∵在RT△AOC中,OA=OC=4,
∴∠OAC=45°,
∴∠QFA=∠OAC=45°,
∴∠AQF=90°,
此時F(2,-2)
∵直線l平行于x軸,
∴點P的縱坐標為-2,
∴x2-3x-4=-2,解得:,
∴,
②當QF=OF時,過點F作FH⊥OA于點H,
由等腰三角形“三線合一”可得:OH=,
∴AH=4-1=3
在等腰直角三角形AFH中,AH=HF=3,
∴點F(1,-3)
∵直線l平行于x軸,
∴點P縱坐標為-3,
∴x2-3x-4=-3,解得:
∴,
③當OQ=OF時,
∵OA=OC,∠AOC=90°,
∴AC=,
∴點O到AC的距離為,
∵OF=OQ=2,
∴此時,不存在這樣的直線l,使得△OQF是等腰三角形,
綜上所述,點P的坐標為,,,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(x-3)(x-2)-p2=0.
(1)求證:無論p取何值時,方程總有兩個不相等的實數(shù)根;
(2)設(shè)方程兩實數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實數(shù)p的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=x﹣2與雙曲線y=(k≠0)相交于A,B兩點,且點A的橫坐標是3.
(1)求k的值;
(2)過點P(0,n)作直線,使直線與x軸平行,直線與直線y=x﹣2交于點M,與雙曲線y= (k≠0)交于點N,若點M在N右邊,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(思考題)
閱讀下面的情景對話,然后解答問題:
老師:我們新定義一種三角形,兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.
小華:等邊三角形一定是奇異三角形;
小明:那直角三角形是否存在奇異三角形呢?
(1)①根據(jù)“奇異三角形”的定義,小紅得出命題:“等邊三角形一定是奇異三角形”,請判斷小紅提出的命題是否正確,并填空:命題 (填“正確”或“不正確”),不要說嘛理由.
②若某三角形的三邊長分別是2、4、,則△ABC是奇異三角形嗎? (填“是”或“不是”),不要說嘛理由.
(2)在Rt△ABC中,兩邊長分別是a=5、c=10,這個三角形是否是奇異三角形?請說明理由.
(3)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇異三角形,求a:b:c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點的坐標分別為A(1,4),B(1,1),C(3,1).
(1)畫出△ABC關(guān)于原點成中心對稱的△A1B1C1,并寫出點C1的坐標;
(2)△ABC繞著點B逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后對應(yīng)的△A2BC2,并寫出點A2的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:
(1)如圖①所示是一個半徑為,高為4的圓柱體和它的側(cè)面展開圖,AB是圓柱的一條母線,一只螞蟻從A點出發(fā)沿圓柱的側(cè)面爬行一周到達B點,求螞蟻爬行的最短路程.(探究思路:將圓柱的側(cè)面沿母線AB剪開,它的側(cè)面展開圖如圖①中的矩形則螞蟻爬行的最短路程即為線段的長)
(2)如圖②所示是一個底面半徑為,母線長為4的圓錐和它的側(cè)面展開圖,PA是它的一條母線,一只螞蟻從A點出發(fā)沿圓錐的側(cè)面爬行一周后回到A點,求螞蟻爬行的最短路程.
(3)如圖③所示,在②的條件下,一只螞蟻從A點出發(fā)沿圓錐的側(cè)面爬行一周到達母線PA上的一點,求螞蟻爬行的最短路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=﹣x2向左平移3個單位,再向上平移4個單位.
(1)寫出平移后的拋物線的函數(shù)關(guān)系式.
(2)若平移后的拋物線的頂點為A,與x軸的兩個交點分別是B、C,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為3正方形ABCD的外部作Rt△AEF,且AE=AF=1,連接DE,BF,BD,則DE2+BF2=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次一共調(diào)查了多少名購買者?
(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為 度.
(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com