【問題情境】張老師給愛好學習的小軍和小俊提出這樣一個問題:如圖1,在△ABC中,AB=AC,點P為邊BC上的任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點C作CF⊥AB,垂足為F.求證:PD+PE=CF.

小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
小俊的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.
【變式探究】如圖3,當點P在BC延長線上時,其余條件不變,求證:PD-PE=CF;
請運用上述解答中所積累的經(jīng)驗和方法完成下列兩題:
【結(jié)論運用】如圖4,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;
【遷移拓展】圖5是一個航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點,ED⊥AD,EC⊥CB,垂足分別為D、C,且AD•CE=DE•BC,AB=2
13
dm,AD=3dm,BD=
37
dm.M、N分別為AE、BE的中點,連接DM、CN,求△DEM與△CEN的周長之和.
考點:四邊形綜合題,全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì),直角三角形斜邊上的中線,勾股定理,矩形的判定與性質(zhì),相似三角形的判定與性質(zhì)
專題:壓軸題,探究型
分析:【問題情境】如下圖②,按照小軍、小俊的證明思路即可解決問題.
【變式探究】如下圖③,借鑒小軍、小俊的證明思路即可解決問題.
【結(jié)論運用】易證BE=BF,過點E作EQ⊥BF,垂足為Q,如下圖④,利用問題情境中的結(jié)論可得PG+PH=EQ,易證EQ=DC,BF=DF,只需求出BF即可.
【遷移拓展】由條件AD•CE=DE•BC聯(lián)想到三角形相似,從而得到∠A=∠ABC,進而補全等腰三角形,△DEM與△CEN的周長之和就可轉(zhuǎn)化為AB+BH,而BH是△ADB的邊AD上的高,只需利用勾股定理建立方程,求出DH,再求出BH,就可解決問題.
解答:解:【問題情境】證明:(方法1)連接AP,如圖②
∵PD⊥AB,PE⊥AC,CF⊥AB,
且S△ABC=S△ABP+S△ACP
1
2
AB•CF=
1
2
AB•PD+
1
2
AC•PE.
∵AB=AC,
∴CF=PD+PE.
(方法2)過點P作PG⊥CF,垂足為G,如圖②.
∵PD⊥AB,CF⊥AB,PG⊥FC,
∴∠CFD=∠FDP=∠FGP=90°.
∴四邊形PDFG是矩形.
∴DP=FG,∠DPG=90°.
∴∠CGP=90°.
∵PE⊥AC,
∴∠CEP=90°.
∴∠PGC=∠CEP.
∵∠BDP=∠DPG=90°.
∴PG∥AB.
∴∠GPC=∠B.
∵AB=AC,
∴∠B=∠ACB.
∴∠GPC=∠ECP.
在△PGC和△CEP中,
∠PGC=∠CEP
∠GPC=∠ECP
PC=CP

∴△PGC≌△CEP.
∴CG=PE.
∴CF=CG+FG
=PE+PD.
【變式探究】
證明:(方法1)連接AP,如圖③.
∵PD⊥AB,PE⊥AC,CF⊥AB,
且S△ABC=S△ABP-S△ACP,
1
2
AB•CF=
1
2
AB•PD-
1
2
AC•PE.
∵AB=AC,
∴CF=PD-PE.

【結(jié)論運用】過點E作EQ⊥BC,垂足為Q,如圖④,
∵四邊形ABCD是矩形,
∴AD=BC,∠C=∠ADC=90°.
∵AD=8,CF=3,
∴BF=BC-CF=AD-CF=5.
由折疊可得:DF=BF,∠BEF=∠DEF.
∴DF=5.
∵∠C=90°,
∴DC=
DF2-CF2

=
52-32

=4.
∵EQ⊥BC,∠C=∠ADC=90°,
∴∠EQC=90°=∠C=∠ADC.
∴四邊形EQCD是矩形.
∴EQ=DC=4.
∵AD∥BC,
∴∠DEF=∠EFB.
∵∠BEF=∠DEF,
∴∠BEF=∠EFB.
∴BE=BF.
由問題情境中的結(jié)論可得:PG+PH=EQ.
∴PG+PH=4.
∴PG+PH的值為4.
【遷移拓展】延長AD、BC交于點F,作BH⊥AF,垂足為H,如圖⑤.
∵AD•CE=DE•BC,
AD
DE
=
BC
EC

∵ED⊥AD,EC⊥CB,
∴∠ADE=∠BCE=90°.
∴△ADE∽△BCE.
∴∠A=∠CBE.
∴FA=FB.
由問題情境中的結(jié)論可得:ED+EC=BH.
設(shè)DH=xdm,
則AH=AD+DH=(3+x)dm.
∵BH⊥AF,
∴∠BHA=90°.
∴BH2=BD2-DH2=AB2-AH2
∵AB=2
13
,AD=3,BD=
37
,
∴(
37
2-x2=(2
13
2-(3+x)2
解得:x=1.
∴BH2=BD2-DH2
=37-1=36.
∴BH=6.
∴ED+EC=6.
∵∠ADE=∠BCE=90°,
且M、N分別為AE、BE的中點,
∴DM=AM=EM=
1
2
AE,CN=BN=EN=
1
2
BE.
∴△DEM與△CEN的周長之和
=DE+DM+EM+CN+EN+EC
=DE+AE+BE+EC
=DE+AB+EC
=DE+EC+AB
=6+2
13

∴△DEM與△CEN的周長之和為(6+2
13
)dm.
點評:本題考查了矩形的性質(zhì)與判定、等腰三角形的性質(zhì)與判定、全等三角形的性質(zhì)與判定、相似三角形的性質(zhì)與判定、平行線的性質(zhì)與判定、直角三角形斜邊上的中線等于斜邊的一半、勾股定理等知識,考查了用面積法證明幾何問題,考查了運用已有的經(jīng)驗解決問題的能力,體現(xiàn)了自主探究與合作交流的新理念,是充分體現(xiàn)新課程理念難得的好題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,2×2網(wǎng)格(每個小正方形的邊長為1)中有A,B,C,D,E,F(xiàn),G、H,O九個格點.拋物線l的解析式為y=(-1)nx2+bx+c(n為整數(shù)).
(1)n為奇數(shù),且l經(jīng)過點H(0,1)和C(2,1),求b,c的值,并直接寫出哪個格點是該拋物線的頂點;
(2)n為偶數(shù),且l經(jīng)過點A(1,0)和B(2,0),通過計算說明點F(0,2)和H(0,1)是否在該拋物線上;
(3)若l經(jīng)過這九個格點中的三個,直接寫出所有滿足這樣條件的拋物線條數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

閱讀下列材料:
解答“已知x-y=2,且x>1,y<0,試確定x+y的取值范圍”有如下解法:
解∵x-y=2,∴x=y+2
又∵x>1,∴y+2>1.
∴y>-1.
又∵y<0,∴-1<y<0. …①
同理得:1<x<2.  …②
由①+②得-1+1<y+x<0+2
∴x+y的取值范圍是0<x+y<2
請按照上述方法,完成下列問題:
(1)已知x-y=3,且x>2,y<1,則x+y的取值范圍是
 

(2)已知y>1,x<-1,若x-y=a成立,求x+y的取值范圍(結(jié)果用含a的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某市體育中考共設(shè)跳繩、立定跳遠、仰臥起坐三個項目,要求毎位學生必須且只需選考其中一項,該市東風中學初三(2)班學生選考三個項目的人數(shù)分布的條形統(tǒng)計圖和扇形統(tǒng)計圖如圖所示.
(1)求該班的學生人數(shù);
(2)若該校初三年級有1000人,估計該年級選考立定跳遠的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在⊙O中,AB,CD是直徑,BE是切線,B為切點,連接AD,BC,BD.
(1)求證:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC與△DEF關(guān)于直線l對稱,請僅用無刻度的直尺,在下面兩個圖中分別作出直線l.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在桌上擺著一個由若干個相同正方體組成的幾何體,其主視圖和左視圖如圖所示,設(shè)組成這個幾何體的小正方體的個數(shù)為n,則n的最小值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

據(jù)報道,2013年漳州市花卉總產(chǎn)值約122億元,居全省第一,數(shù)據(jù)122億元用科學記數(shù)法表示為
 
元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

點P(a,b)在第二象限,則點P到y(tǒng)軸的距離是(  )
A、aB、bC、-aD、-b

查看答案和解析>>

同步練習冊答案