【題目】點(diǎn)燃蠟燭,按照與時(shí)間成正比例關(guān)系變短,長(zhǎng)21cm的蠟燭,已知點(diǎn)燃6分鐘后,蠟燭變短3.6cm,設(shè)蠟燭點(diǎn)燃x分鐘后變短ycm,求:
(1)用x表示函數(shù)y的解析式;
(2)自變量的取值范圍;
(3)此蠟燭幾分鐘燃燒完?
(4)畫出此函數(shù)的圖像。
【答案】(1)y=0.6x;(2)0≤x≤35;(3)點(diǎn)燃35分鐘后可燃燒光;(4)見解析.
【解析】
(1)根據(jù)燃燒的蠟燭=每分鐘燃燒的長(zhǎng)度×時(shí)間,建立函數(shù)關(guān)系式用待定系數(shù)法求解;
(2)當(dāng)y=21時(shí)代入(1)的解析式就可以求出x的值從而可以求出結(jié)論;
(3)令y=21即可求得燃燒完使用的時(shí)間;
(4)根據(jù)自變量的取值范圍知:此圖象是一條線段,而不能畫成直線或射線.
(1)設(shè)y=kx(k≠0),由題意,得
3.6=6k,
解得k=0.6,
則用x表示函數(shù)y的解析式為y=0.6x;
(2)當(dāng)x=0時(shí),y=0,
當(dāng)y=21時(shí),x=35
則自變量的取值范圍是:0≤x≤35;
(3)當(dāng)y=21時(shí),0.6x=21,
∴x=35,
所以點(diǎn)燃35分鐘后可燃燒光;
(4)如圖,由x的取值范圍:0≤x≤35;
列表為:
x | 0 | 35 |
y=0.6x | 0 | 21 |
圖象是一條線段.描點(diǎn)并連線為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點(diǎn)繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時(shí),我們稱△A'B'C'是△ABC的“旋補(bǔ)三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補(bǔ)中線”,點(diǎn)A叫做“旋補(bǔ)中心”.
特例感知:
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補(bǔ)三角形”,AD是△ABC的“旋補(bǔ)中線”.
①如圖2,當(dāng)△ABC為等邊三角形時(shí),AD與BC的數(shù)量關(guān)系為AD= BC;
②如圖3,當(dāng)∠BAC=90°,BC=8時(shí),則AD長(zhǎng)為 .
猜想論證:
(2)在圖1中,當(dāng)△ABC為任意三角形時(shí),猜想AD與BC的數(shù)量關(guān)系,并給予證明.
拓展應(yīng)用
(3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四邊形內(nèi)部是否存在點(diǎn)P,使△PDC是△PAB的“旋補(bǔ)三角形”?若存在,給予證明,并求△PAB的“旋補(bǔ)中線”長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC,△BDE為等邊三角形,C、B、D三點(diǎn)共線。
求證:(1)AD=EC;
(2)BP=BQ;
(3)△BPQ為等邊三角形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),已知菱形的邊長(zhǎng)為,點(diǎn)在軸負(fù)半軸上,點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為(,),拋物線頂點(diǎn)在邊上,并經(jīng)過(guò)邊的中點(diǎn).
(1)求這條拋物線的函數(shù)解析式;
(2)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)是,求點(diǎn)到點(diǎn)的最短距離;
(3)如圖(2)將菱形以每秒個(gè)單位長(zhǎng)度的速度沿軸正方向勻速平移,過(guò)點(diǎn)作于點(diǎn),交拋物線于點(diǎn),連接、.設(shè)菱形平移的時(shí)間為秒(),問(wèn)是否存在這樣的,使與相似?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知點(diǎn)M是線段AB上一點(diǎn),點(diǎn)C在線段AM上,點(diǎn)D在線段BM上,C、D兩點(diǎn)分別從M、B出發(fā)以1cm/s、3cm/s的速度沿直線BA向左運(yùn)動(dòng),運(yùn)動(dòng)方向如箭頭所示.
(1)若AB=10cm,當(dāng)點(diǎn)C、D運(yùn)動(dòng)了2s,求AC+MD的值.
(2)若點(diǎn)C、D運(yùn)動(dòng)時(shí),總有MD=3AC,則:AM= AB.
(3)如圖②,若AM=AB,點(diǎn)N是直線AB上一點(diǎn),且AN﹣BN=MN,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板的兩個(gè)銳角頂點(diǎn)重合,,,,分別是,的平分線.
(1)如圖①所示,當(dāng)與重合時(shí),則的大小為______.
(2)當(dāng)繞著點(diǎn)旋轉(zhuǎn)至如圖②所示,當(dāng),則的大小為多少?
(3)當(dāng)繞著點(diǎn)旋轉(zhuǎn)至如圖③所示,當(dāng)時(shí),求的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快遞公司有甲、乙、丙三個(gè)機(jī)器人分配快件,甲單獨(dú)完成需要x小時(shí),乙單獨(dú)完成需要y小時(shí),丙單獨(dú)完成需要z小時(shí).
(1)求甲單獨(dú)完成的時(shí)間是乙丙合作完成時(shí)間的幾倍?
(2)若甲單獨(dú)完成的時(shí)間是乙丙合作完成時(shí)間的a倍,乙單獨(dú)完成的時(shí)間是甲丙合作完成時(shí)間的b倍,丙單獨(dú)完成的時(shí)間是甲乙合作完成時(shí)間的c倍,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)(a,b)是一次函數(shù)y=(k-2)x+m與反比例函數(shù)的圖象的交點(diǎn),且a、b是關(guān)于x的一元二次方程的兩個(gè)不相等的實(shí)數(shù)根,其中k為非負(fù)整數(shù),m、n為常數(shù).
(1)求k的值;
(2)求一次函數(shù)與反比例函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com