【題目】如圖①,②,在平面直角坐標(biāo)系xoy中,點(diǎn)A的坐標(biāo)為(4,0),以點(diǎn)A為圓心,4為半徑的圓與x軸交于O,B兩點(diǎn),OC為弦, , P是x軸上的一動(dòng)點(diǎn),連結(jié)CP。
(1)求的度數(shù);
(2)如圖①,當(dāng)CP與⊙A相切時(shí),求PO的長;
(3)如圖②,當(dāng)點(diǎn)P在直徑OB上時(shí),CP的延長線與⊙A相交于點(diǎn)Q,問PO為何值時(shí),是等腰三角形?
【答案】(1)60°.(2)4.(3)2或2+2.
【解析】
試題(1)OA=AC首先三角形OAC是個(gè)等腰三角形,因?yàn)?/span>∠AOC=60°,三角形AOC是個(gè)等邊三角形,因此∠OAC=60°;
(2)如果PC與圓A相切,那么AC⊥PC,在直角三角形APC中,有∠PCA的度數(shù),有A點(diǎn)的坐標(biāo)也就有了AC的長,可根據(jù)余弦函數(shù)求出PA的長,然后由PO=PA-OA得出OP的值.
(3)本題分兩種情況:
①以O為頂點(diǎn),OC,OQ為腰.那么可過C作x軸的垂線,交圓于Q,此時(shí)三角形OCQ就是此類情況所說的等腰三角形;那么此時(shí)PO可在直角三角形OCP中,根據(jù)∠COA的度數(shù),和OC即半徑的長求出PO.
②以Q為頂點(diǎn),QC,QD為腰,那么可做OC的垂直平分線交圓于Q,則這條線必過圓心,如果設(shè)垂直平分線交OC于D的話,可在直角三角形AOQ中根據(jù)∠QAE的度數(shù)和半徑的長求出Q的坐標(biāo);然后用待定系數(shù)法求出CQ所在直線的解析式,得出這條直線與x軸的交點(diǎn),也就求出了PO的值.
試題解析:(1)∵∠AOC=60°,AO=AC,
∴△AOC是等邊三角形,
∴∠OAC=60°.
(2)∵CP與A相切,
∴∠ACP=90°,
∴∠APC=90°-∠OAC=30°;
又∵A(4,0),
∴AC=AO=4,
∴PA=2AC=8,
∴PO=PA-OA=8-4=4.
(3)①過點(diǎn)C作CP1⊥OB,垂足為P1,延長CP1交⊙A于Q1;
∵OA是半徑,
∴ 弧OC=弧OQ1,
∴OC=OQ1,
∴△OCQ1是等腰三角形;
又∵△AOC是等邊三角形,
∴P1O=OA=2;
②過A作AD⊥OC,垂足為D,延長DA交⊙A于Q2,CQ2與x軸交于P2;
∵A是圓心,
∴DQ2是OC的垂直平分線,
∴CQ2=OQ2,
∴△OCQ2是等腰三角形;
過點(diǎn)Q2作Q2E⊥x軸于E,
在Rt△AQ2E中,
∵∠Q2AE=∠OAD=∠OAC=30°,
∴Q2E=AQ2=2,AE=2,
∴點(diǎn)Q2的坐標(biāo)(4+2,-2);
在Rt△COP1中,
∵P1O=2,∠AOC=60°,
∴CP1=2,
∴C點(diǎn)坐標(biāo)(2,2);
設(shè)直線CQ2的關(guān)系式為y=kx+b,則
,解得,
∴y=-x+2+2;
當(dāng)y=0時(shí),x=2+2,
∴P2O=2+2.
考點(diǎn): 1.切線的性質(zhì);2.等腰三角形的性質(zhì);3.等邊三角形的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC中,點(diǎn)A在x軸上,頂點(diǎn)C的坐標(biāo)為(1,),動(dòng)點(diǎn)D、E分別在射線OC、OB上,則CE+DE+DB的最小值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角△ABC內(nèi)接于O,AD⊥BC.垂足為D.
(1)如圖1,若,BD=DC,求∠B的度數(shù).
(2)如圖2,BE⊥AC,垂足為E,BE交AD于點(diǎn)F,過點(diǎn)B作BG∥AD交⊙O于點(diǎn)G,在AB邊上取一點(diǎn)H,使得AH=BG;
①連接CG,試探究∠ABC,∠ACG的數(shù)量關(guān)系,并給予證明.
②求證:△AFH是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=5,BC=4,以A為圓心,3為半徑作圓.試判斷:
①點(diǎn)C與⊙A的位置關(guān)系;②點(diǎn)B與⊙A的位置關(guān)系;③AB中的D點(diǎn)與⊙A的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△OAB中,OA=4,AB=5,點(diǎn)C在OA上,AC=1,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(shù)(k≠0)的圖象經(jīng)過圓心P,則k=________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有4張正面分別標(biāo)有數(shù)字的不透明卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中任取一張,將卡片上的數(shù)字記為,另有一個(gè)被均勻分成4份的轉(zhuǎn)盤,上面分別標(biāo)有數(shù)字,轉(zhuǎn)動(dòng)轉(zhuǎn)盤,指針?biāo)傅臄?shù)字記為(若指針指在分割線上則重新轉(zhuǎn)一次),則點(diǎn)落在拋物線與軸所圍成的區(qū)域內(nèi)(不含邊界)的概率是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩幢大樓AB,CD之間的水平距離(BD)為20米,為測得兩幢大樓的高度,小王同學(xué)站在大樓AB的頂端A處測得大樓CD頂端C的仰角為60°,測得大樓CD的底部D的俯角為45°,試求大樓AB和CD的高度.(精確到1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,于點(diǎn),于點(diǎn),為邊的中點(diǎn),連接,則下列結(jié)論:①,②,③為等邊三角形,④當(dāng)時(shí),.請(qǐng)將正確結(jié)論的序號(hào)填在橫線上__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的頂點(diǎn)M在第二象限,且經(jīng)過點(diǎn) A(1,0)和點(diǎn) B(0,2).則
(1)a 的取值范圍是________;
(2)若△AMO的面積為△ABO面積的倍時(shí),則a的值為________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com