【題目】如圖,在四邊形ABCD,ADBC,∠ADC=90°,BC=8,DC=6,AD=10,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿線段DA的方向以每秒2個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段CB上以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)PQ分別從點(diǎn)D,C同時(shí)出發(fā),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)Q隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒)。

1)當(dāng)點(diǎn)P運(yùn)動(dòng)t秒后,AP=____________(用含t的代數(shù)式表示);

2)若四邊形ABQP為平行四邊形,求運(yùn)動(dòng)時(shí)間t;

3)當(dāng)t為何值時(shí),△BPQ是以BQBP為底邊的等腰三角形;

【答案】110-2t;2t=23t=t=.

【解析】

1)根據(jù)AP=AD-DP即可寫出;

2)當(dāng)四邊形ABQP為平行四邊形時(shí),AP=BQ,即可列方程進(jìn)行求解;

3)分兩種情況討論:PQ=BQ,RtPQE中,由PQ2=PE2+EQ2,PQ=BQ,將各數(shù)據(jù)代入即可求解;PB=PQ,BQ=2EQ,列方程即可求解.

1)∵動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿線段DA的方向以每秒2個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),

AP=AD-DP=10-2t,

故填:10-2t;

2)∵四邊形ABQP為平行四邊形時(shí),∴AP=BQ

BQ=BC-CQ=8-t,

10-2t=8-t,解得t=2,

3)如圖,過(guò)點(diǎn)PPEBCE

①當(dāng)∠BQP為頂角時(shí),PQ=BQBQ=8-t,PE=CD=6,EQ=CE-CQ=2t-t=t,

RtPQM中,由PQ2=PE2+EQ2,又PQ=BQ,

(8-t)2=62+t2,

解得t=

②當(dāng)∠BPQ為頂角時(shí),則BP=PQ

BQ=2EQ,即8-t=2t

解得t=

t=t=時(shí),符合題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,給出如下定義:已知點(diǎn)A(2,3),點(diǎn)B(6,3),連接AB.如果線段AB上有一個(gè)點(diǎn)與點(diǎn)P的距離不大于1,那么稱點(diǎn)P是線段AB的“環(huán)繞點(diǎn)”.

(1)已知點(diǎn)C(3,1.5),D(4,3.5),E(1,3),則是線段AB的“環(huán)繞點(diǎn)”的點(diǎn)是   

(2)已知點(diǎn)P(m,n)在反比例函數(shù)y=的圖象上,且點(diǎn)P是線段AB的“環(huán)繞點(diǎn)”,求出點(diǎn)P的橫坐標(biāo)m的取值范圍;

(3)已知M上有一點(diǎn)P是線段AB的“環(huán)繞點(diǎn)”,且點(diǎn)M(4,1),求M的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)解不等式≤1,并把它的解集在數(shù)軸上表示出來(lái);

(2)若關(guān)于x的一元一次不等式x≥a只有3個(gè)負(fù)整數(shù)解,則a的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各數(shù)分別填入相應(yīng)的集合里.

1)正數(shù)集合:{     …};

2)負(fù)數(shù)集合:{     …};

3)整數(shù)集合:{     …};

4)分?jǐn)?shù)集合:{     …}

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小文同學(xué)統(tǒng)計(jì)了某棟居民樓中全體居民每周使用手機(jī)支付的次數(shù),并繪制了直方圖.根據(jù)圖中信息,下列說(shuō)法:

①這棟居民樓共有居民140

②每周使用手機(jī)支付次數(shù)為2835次的人數(shù)最多

③有的人每周使用手機(jī)支付的次數(shù)在3542

④每周使用手機(jī)支付不超過(guò)21次的有15

其中正確的是(

A.①②B.②③C.③④D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在信息快速發(fā)展的社會(huì),信息消費(fèi)已成為人們生活的重要部分.我市區(qū)機(jī)抽取了部分家庭,調(diào)查每月用于信息消費(fèi)的金額,數(shù)據(jù)整理成如圖所示的不完整統(tǒng)計(jì)圖.已知A、B兩組戶數(shù)直方圖的高度比為1:5,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問(wèn)題:

(1)A組的頻數(shù)是 ,本次調(diào)查樣本的容量是 ;

(2)補(bǔ)全直方圖(需標(biāo)明各組頻數(shù));

(3)若該社區(qū)有1500戶住戶,請(qǐng)估計(jì)月信息消費(fèi)額不少于300元的戶數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知中,,直角的頂點(diǎn)PBC的中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)EF,給出以下五個(gè)結(jié)論:;是等腰直角三角形;;;.其中正確的有( )

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)Ax軸上,OA4,將線段OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°OB的位置.

1)求點(diǎn)B的坐標(biāo);

2)求經(jīng)過(guò)A、O、B的拋物線的解析式;

3)在此拋物線的對(duì)稱軸上,是否存在點(diǎn)P,使得以點(diǎn)P、O、B為頂點(diǎn)的三角形是等腰三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點(diǎn),與y軸交于點(diǎn)C,過(guò)點(diǎn)B作BMx軸,垂足為M,BM=OM,OB=2,點(diǎn)A的縱坐標(biāo)為4.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)連接MC,求四邊形MBOC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案