【題目】問題背景:
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關(guān)系.
小吳同學(xué)探究此問題的思路是:將△BCD繞點(diǎn)D,逆時(shí)針旋轉(zhuǎn)90°到△AED處,點(diǎn)B,C分別落在點(diǎn)A,E處(如圖②),易證點(diǎn)C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC=CD.
簡(jiǎn)單應(yīng)用:
(1)在圖①中,若AC=2,BC=4,則CD= .
(2)如圖③,AB是⊙O的直徑,點(diǎn)C、D在⊙上,弧AD=弧BD,若AB=13,BC=12,求CD的長(zhǎng).
拓展規(guī)律:
(3)如圖4,△ABC中,∠ACB=90°,AC=BC,點(diǎn)P為AB的中點(diǎn),若點(diǎn)E滿足AE=AC,CE=CA,且點(diǎn)E在直線AC的左側(cè)時(shí),點(diǎn)Q為AE的中點(diǎn),則線段PQ與AC的數(shù)量關(guān)系是 .
【答案】(1);(2);(3)或.
【解析】
(1)由題意可知:AC+BC= CD,所以將AC與BC的長(zhǎng)度代入即可得出CD的長(zhǎng)度;(2)連接AC、BD、AD即可將問題轉(zhuǎn)化為第(1)問的問題,利用題目所給出的證明思路即可求出CD的長(zhǎng)度;(3)當(dāng)點(diǎn)E在直線AC的左側(cè)時(shí),連接CQ、CP后,利用(2)的結(jié)論進(jìn)行求解即可.
(1)由題意知:AC+BC= CD,
∴2+4 = CD,
∴CD=3;
(2)解:連接AC、BD、AD,
∵AB是⊙O的直徑,
∴∠ADB=∠ACB=90°,
∵ ,
∴AD=BD,
將△BCD繞點(diǎn)D,逆時(shí)針旋轉(zhuǎn)90°到△AED處,如圖③,
∴∠EAD=∠DBC,
∵∠DBC+∠DAC=180°,
∴∠EAD+∠DAC=180°,
∴E、A、C三點(diǎn)共線,
∵AB=13,BC=12,
∴由勾股定理可求得:AC=5,
∵BC=AE,
∴CE=AE+AC=17,
∵∠EDA=∠CDB,
∴∠EDA+∠ADC=∠CDB+∠ADC,
即∠EDC=∠ADB=90°,
∵CD=ED,
∴△EDC是等腰直角三角形,
∴CE=CD,
∴CD= ;
(3)當(dāng)點(diǎn)E在直線AC的左側(cè)時(shí),如圖④,
連接CQ,PC,
∵AC=BC,∠ACB=90°,點(diǎn)P是AB的中點(diǎn),
∴AP=CP,∠APC=90°,
又∵CA=CE,點(diǎn)Q是AE的中點(diǎn),
∴∠CQA=90°,
設(shè)AC=a,
∵AE= AC,
∴AE= a,
∴AQ= AE= ,
由勾股定理可求得:CQ= a,
由(2)的證明過程可知:AQ+CQ= PQ,
∴ PQ= a+ a,
∴ PQ= AC或;
∴當(dāng)點(diǎn)E在直線AC的左側(cè)時(shí),線段PQ與AC的數(shù)量關(guān)系是 PQ= AC或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,先將拋物線y=2x2﹣4x關(guān)于y軸作軸對(duì)稱變換,再將所得的拋物線,繞它的頂點(diǎn)旋轉(zhuǎn)180°,那么經(jīng)兩次變換后所得的新拋物線的函數(shù)表達(dá)式為( 。
A.y=﹣2x﹣4xB.y=﹣2x+4x
C.y=﹣2x﹣4x﹣4D.y=﹣2x+4x+4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形 的邊長(zhǎng)為 ,點(diǎn) 、 分別在邊 、 上,且 , 、 交于點(diǎn) .下列結(jié)論:,,, 中,正確的有________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,以為直徑,為圓心的半圓交于點(diǎn),點(diǎn)為弧的中點(diǎn),連接交于點(diǎn),為的角平分線,且,垂足為點(diǎn).判斷直線與的位置關(guān)系,并說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點(diǎn)C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的長(zhǎng);
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中,是邊上一點(diǎn),DE∥BC交于點(diǎn),將沿翻折得到,若是直角三角形,則長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)探究活動(dòng)課中,某同學(xué)有一塊矩形紙片ABCD,已知AD=15,AB=9,M為線AD上的一個(gè)動(dòng)點(diǎn),將△ABM沿BM折疊得到△MBN,若△NBC是直角三角形,則AM長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F(xiàn),G,H分別是BD,BC,AC,AD的中點(diǎn),且AB=CD,下列結(jié)論:①EG⊥FH;②四邊形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正確的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為4,∠B=120°.點(diǎn)P是對(duì)角線AC上一點(diǎn)(不與端點(diǎn)A重合),則線段AP+PD的最小值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com