【題目】如圖,四邊形ABCD中,AC=5,AB=4CD=12,AD=13,∠B=90°

1)求BC邊的長(zhǎng);

2)求四邊形ABCD的面積.

【答案】13;(236

【解析】

1)先根據(jù)勾股定理求出BC的長(zhǎng)度;
2)根據(jù)勾股定理的逆定理判斷出△ACD是直角三角形,四邊形ABCD的面積等于△ABC和△ACD的面積和,再利用三角形的面積公式求解即可.

解:(1)∵∠ABC=90°,AC=5,AB=4
BC= ,

2)在△ACD中,AC2+CD2= 52+122=169

AD2 =132=169,

AC2+CD2= AD2,
∴△ACD是直角三角形,
∴∠ACD=90°;

由圖形可知:S四邊形ABCD=SABC+SACD= ABBC+ ACCD,
= ×3×4+ ×5×12
=36

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,弦、分別是的平分線與,的交點(diǎn),延長(zhǎng)線上一點(diǎn),且

的長(zhǎng);

試判斷直線的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y=mx+3的圖象經(jīng)過(guò)點(diǎn)A(2,6),B(n,-3).求:

(1)m,n的值;

(2)OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰△ABC,點(diǎn)DE、F分別在BC、AB、AC上,且∠BAC=ADE=ADF=60°.

1)在圖中找出與∠DAC相等的角,并加以證明;

2)若AB=6,BE=m,求:AF(用含m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:RTABCRTDEF中,∠ACB=∠EDF90°,∠DEF45°,EF8cm,AC16cm,BC12cm.現(xiàn)將RTABCRTDEF按圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、CE)、F在同一條直線上,并按如下方式運(yùn)動(dòng).

運(yùn)動(dòng)一:如圖2,ABC從圖1的位置出發(fā),以1cm/s的速度沿EF方向向右勻速運(yùn)動(dòng),DEAC相交于點(diǎn)Q,當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí)暫停運(yùn)動(dòng);

運(yùn)動(dòng)二:在運(yùn)動(dòng)一的基礎(chǔ)上,如圖3RTABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn),CADF交于點(diǎn)Q,CBDE交于點(diǎn)P,此時(shí)點(diǎn)QDF上勻速運(yùn)動(dòng),速度為cm/s,當(dāng)QCDF時(shí)暫停旋轉(zhuǎn);

運(yùn)動(dòng)三:在運(yùn)動(dòng)二的基礎(chǔ)上,如圖4,RTABC1cm/s的速度沿EF向終點(diǎn)F勻速運(yùn)動(dòng),直到點(diǎn)C與點(diǎn)F重合時(shí)為止.

設(shè)運(yùn)動(dòng)時(shí)間為ts),中間的暫停不計(jì)時(shí),

解答下列問(wèn)題

1)在RTABC從運(yùn)動(dòng)一到最后運(yùn)動(dòng)三結(jié)束時(shí),整個(gè)過(guò)程共耗時(shí)   s;

2)在整個(gè)運(yùn)動(dòng)過(guò)程中,設(shè)RTABCRTDEF的重疊部分的面積為Scm2),求St之間的函數(shù)關(guān)系式,并直接寫(xiě)出自變量t的取值范圍;

3)在整個(gè)運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻,點(diǎn)Q正好在線段AB的中垂線上,若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△

1)在圖中用直尺和圓規(guī)作出的平分線和邊的垂直平分線交于點(diǎn)(保留作圖痕跡,不寫(xiě)作法).

2)在(1)的條件下,若點(diǎn)、分別是邊上的點(diǎn),且,連接求證:;

3)如圖,在(1)的條件下,點(diǎn)、分別是、邊上的點(diǎn),且△的周長(zhǎng)等于邊的長(zhǎng),試探究的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在距樹(shù)米的地面上平放一面鏡子,人退后到距鏡子米的處,在鏡子里恰巧看見(jiàn)樹(shù)頂,若人眼距地面米.

求樹(shù)高;

是位似圖形嗎?若是,請(qǐng)指出位似中心;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小張去文具店購(gòu)買作業(yè)本,作業(yè)本有大、小兩種規(guī)格,大本作業(yè)本的單價(jià)比小本作業(yè)本貴0.3元,已知用8元購(gòu)買大本作業(yè)本的數(shù)量與用5元購(gòu)買小本作業(yè)本的數(shù)量相同.

1)求大本作業(yè)本與小本作業(yè)本每本各多少元?

2)因作業(yè)需要,小張要再購(gòu)買一些作業(yè)本,購(gòu)買小本作業(yè)本的數(shù)量是大本作業(yè)本數(shù)量的2倍,總費(fèi)用不超過(guò)15元.則大本作業(yè)本最多能購(gòu)買多少本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解

在平面直角坐標(biāo)系xoy中,兩條直線l1y=k1x+b1k1≠0),l2y=k2x+b2k2≠0),①當(dāng)l1l2時(shí),k1=k2,且b1b2;②當(dāng)l1l2時(shí),k1·k2=1

類比應(yīng)用

1)已知直線ly=2x1,若直線l1y=k1x+b1與直線l平行,且經(jīng)過(guò)點(diǎn)A(-2,1),試求直線l1的表達(dá)式;

拓展提升

2)如圖,在平面直角坐標(biāo)系xoy中,ABC的頂點(diǎn)坐標(biāo)分別為:A0,2),B4,0),C(-1,-1),試求出AB邊上的高CD所在直線的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案