【題目】一個學(xué)生蕩秋千,秋千鏈子的長度為,當(dāng)秋千向兩邊擺動時,擺角(指擺到最高位置時的秋千與鉛垂線的夾角)恰好是,則它擺至最高位置時與其擺至最低位置時的高度之差為 ____m.(結(jié)果可以保留根號)

【答案】

【解析】

設(shè)秋千擺至最低點(diǎn)時的位置為C,連結(jié)AB,交OCD.當(dāng)秋千擺至最低點(diǎn)C時,點(diǎn)C為弧AB的中點(diǎn),由垂徑定理的推論知ABOC,AD=BD,再解直角AOD,求得OD,進(jìn)而求出DC即可.

如圖,設(shè)秋千擺至最低點(diǎn)時的位置為C,連結(jié)AB,交OCD

∵點(diǎn)C為弧AB的中點(diǎn),O為圓心,

ABOCAD=BD,弧AC=BC,

∵∠AOB=60°,

∴∠AOC=30°

OA=OB=OC=3,

AD=OA=OD=,

DC=OC-OD=

即它擺動至最高位置與最低位置的高度之差為(m

故答案為(m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長為半徑畫弧分別交AB,AC于點(diǎn)M和N,再分別以點(diǎn)M,N為圓心畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法中正確的個數(shù)是( 。

AD是BAC的平分線     

②∠ADC=60°

③△ABD是等腰三角形  

點(diǎn)D到直線AB的距離等于CD的長度.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形OAA1的直角邊OAx軸上,點(diǎn)A1在第一象限,且OA=1,以點(diǎn)A1為直角頂點(diǎn),OA1為一直角邊作等腰直角三角形OA1A2,再以點(diǎn)A2為直角頂點(diǎn),OA2為直角邊作等腰直角三角形OA2A3依此規(guī)律,則點(diǎn)A2018的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】濟(jì)南某中學(xué)在參加“創(chuàng)文明城,點(diǎn)贊泉城”書畫比賽中,楊老師從全校30個班中隨機(jī)抽取了4個班(用A,B,C,D表示),對征集到的作鼎的數(shù)量進(jìn)行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.

請根據(jù)以上信息,回答下列問題:

(l)楊老師采用的調(diào)查方式是   (填“普查”或“抽樣調(diào)查”);

(2)請補(bǔ)充完整條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中C班作品數(shù)量所對應(yīng)的圓心角度數(shù)   

(3)請估計全校共征集作品的什數(shù).

(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個用來盛爆米花的圓錐形紙杯,紙杯開口圓的直徑EF長為6 cm,母線OE(OF)長為9cm在母線OF上的點(diǎn)A處有一塊爆米花殘渣,且FA = 3cm在母線OE上的點(diǎn)B只螞蟻,且EB = 1cm這只螞蟻從點(diǎn)B處沿圓錐表面爬行到A點(diǎn),則爬行的最短距離為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A20,0),C0,8),點(diǎn)DOA的中點(diǎn),點(diǎn)P在邊BC上運(yùn)動,當(dāng)ODP是腰長為10的等腰三角形時,則P點(diǎn)的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線ymx24mx+3mm0)與x軸交于AB兩點(diǎn)(點(diǎn)B在點(diǎn)A右側(cè)).與y軸交點(diǎn)C,與直線lyx+1交于DE兩點(diǎn),

1)當(dāng)m1時,連接BC,求∠OBC的度數(shù);

2)在(1)的條件下,連接DBEB,是否存在拋物線在第四象限上一點(diǎn)P,使得SDBESDPE?若存在,求出此時P點(diǎn)坐標(biāo)及PB的長度;若不存在,請說明理由;

3)若以DE為直徑的圓恰好與x軸相切,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,連接ACBC

1)求線段AC的長;

2)如圖2,E為拋物線的頂點(diǎn),FAC上方的拋物線上一動點(diǎn),M、N為直線AC上的兩動點(diǎn)(MN的左側(cè)),且MN4,作FPAC于點(diǎn)PFQy軸交AC于點(diǎn)Q.當(dāng)△FPQ的面積最大時,連接EFEN、FM,求四邊形ENMF周長的最小值.

3)如圖3,將△BCO沿x軸負(fù)方向平移個單位后得△B'C'O',再將△B'C'O'繞點(diǎn)O'順時針旋轉(zhuǎn)α度,得到△BCO'(其中0°<α180°),旋轉(zhuǎn)過程中直線BC″與直線AC交于點(diǎn)G,與x軸交于點(diǎn)H,當(dāng)△AGH是等腰三角形時,求α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)-2≤x≤1時,二次函數(shù)y=-x-m2+m2+1有最大值3,則實數(shù)m的值為( 。

A. 2-B. 或-C. -D. -

查看答案和解析>>

同步練習(xí)冊答案