【題目】一個學(xué)生蕩秋千,秋千鏈子的長度為,當(dāng)秋千向兩邊擺動時,擺角(指擺到最高位置時的秋千與鉛垂線的夾角)恰好是,則它擺至最高位置時與其擺至最低位置時的高度之差為 ____m.(結(jié)果可以保留根號)
【答案】
【解析】
設(shè)秋千擺至最低點(diǎn)時的位置為C,連結(jié)AB,交OC于D.當(dāng)秋千擺至最低點(diǎn)C時,點(diǎn)C為弧AB的中點(diǎn),由垂徑定理的推論知AB⊥OC,AD=BD,再解直角△AOD,求得OD,進(jìn)而求出DC即可.
如圖,設(shè)秋千擺至最低點(diǎn)時的位置為C,連結(jié)AB,交OC于D.
∵點(diǎn)C為弧AB的中點(diǎn),O為圓心,
∴AB⊥OC,AD=BD,弧AC=弧BC,
∵∠AOB=60°,
∴∠AOC=30°.
∵OA=OB=OC=3,
∴AD=OA=,OD=,
∴DC=OC-OD=,
即它擺動至最高位置與最低位置的高度之差為()m.
故答案為()m.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長為半徑畫弧分別交AB,AC于點(diǎn)M和N,再分別以點(diǎn)M,N為圓心畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法中正確的個數(shù)是( 。
①AD是∠BAC的平分線
②∠ADC=60°
③△ABD是等腰三角形
④點(diǎn)D到直線AB的距離等于CD的長度.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形OAA1的直角邊OA在x軸上,點(diǎn)A1在第一象限,且OA=1,以點(diǎn)A1為直角頂點(diǎn),OA1為一直角邊作等腰直角三角形OA1A2,再以點(diǎn)A2為直角頂點(diǎn),OA2為直角邊作等腰直角三角形OA2A3…依此規(guī)律,則點(diǎn)A2018的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】濟(jì)南某中學(xué)在參加“創(chuàng)文明城,點(diǎn)贊泉城”書畫比賽中,楊老師從全校30個班中隨機(jī)抽取了4個班(用A,B,C,D表示),對征集到的作鼎的數(shù)量進(jìn)行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,回答下列問題:
(l)楊老師采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”);
(2)請補(bǔ)充完整條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中C班作品數(shù)量所對應(yīng)的圓心角度數(shù) .
(3)請估計全校共征集作品的什數(shù).
(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個用來盛爆米花的圓錐形紙杯,紙杯開口圓的直徑EF長為6 cm,母線OE(OF)長為9cm.在母線OF上的點(diǎn)A處有一塊爆米花殘渣,且FA = 3cm.在母線OE上的點(diǎn)B處有一只螞蟻,且EB = 1cm.這只螞蟻從點(diǎn)B處沿圓錐表面爬行到A點(diǎn),則爬行的最短距離為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(20,0),C(0,8),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在邊BC上運(yùn)動,當(dāng)△ODP是腰長為10的等腰三角形時,則P點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=mx2﹣4mx+3m(m>0)與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A右側(cè)).與y軸交點(diǎn)C,與直線l:y=x+1交于D、E兩點(diǎn),
(1)當(dāng)m=1時,連接BC,求∠OBC的度數(shù);
(2)在(1)的條件下,連接DB、EB,是否存在拋物線在第四象限上一點(diǎn)P,使得S△DBE=S△DPE?若存在,求出此時P點(diǎn)坐標(biāo)及PB的長度;若不存在,請說明理由;
(3)若以DE為直徑的圓恰好與x軸相切,求此時m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接AC、BC.
(1)求線段AC的長;
(2)如圖2,E為拋物線的頂點(diǎn),F為AC上方的拋物線上一動點(diǎn),M、N為直線AC上的兩動點(diǎn)(M在N的左側(cè)),且MN=4,作FP⊥AC于點(diǎn)P,FQ∥y軸交AC于點(diǎn)Q.當(dāng)△FPQ的面積最大時,連接EF、EN、FM,求四邊形ENMF周長的最小值.
(3)如圖3,將△BCO沿x軸負(fù)方向平移個單位后得△B'C'O',再將△B'C'O'繞點(diǎn)O'順時針旋轉(zhuǎn)α度,得到△B″C″O'(其中0°<α<180°),旋轉(zhuǎn)過程中直線B″C″與直線AC交于點(diǎn)G,與x軸交于點(diǎn)H,當(dāng)△AGH是等腰三角形時,求α的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)-2≤x≤1時,二次函數(shù)y=-(x-m)2+m2+1有最大值3,則實數(shù)m的值為( 。
A. 2或-B. 或-C. 或-D. 或-
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com