【題目】我們知道,演繹推理的過程稱為證明,證明的出發(fā)點(diǎn)和依據(jù)是基本事實(shí).證明三角形全等的基本事實(shí)有:兩邊及其夾角分別相等的兩個(gè)三角形全等,兩角及其夾邊分別相等的兩個(gè)三角形全等,三邊分別相等的兩個(gè)三角形全等.
(1)請(qǐng)選擇利用以上基本事實(shí)和三角形內(nèi)角和定理,結(jié)合下列圖形,證明:兩角分別相等且其中一組等角的對(duì)邊相等的兩個(gè)三角形全等.
(2)把三角形的三條邊和三個(gè)角統(tǒng)稱為三角形的六個(gè)元素.如果兩個(gè)三角形有四對(duì)對(duì)應(yīng)元素相等,這兩個(gè)三角形一定全等嗎?請(qǐng)說明理由.
【答案】(1)證明見詳解;(2)兩個(gè)三角形一定全等,理由見詳解.
【解析】
(1)通過兩角相等和三角形內(nèi)角和定理可知第三個(gè)角也相等,然后利用兩角及夾邊分別相等即可證明兩三角形全等;
(2)四對(duì)對(duì)應(yīng)元素相等,可分三種情況: 給出三條邊和任一角對(duì)應(yīng)相等;給出兩條邊和兩個(gè)角對(duì)應(yīng)相等; 給出三個(gè)角和任一邊對(duì)應(yīng)相等,分情況進(jìn)行討論即可.
(1)已知: 證明:
證明:∵ ,
又∵
∴
在和中,
∴
(2)兩個(gè)三角形一定全等,理由如下:
如果給出三條邊和任一角對(duì)應(yīng)相等,可用SSS證明兩三角形全等;
如果給出兩條邊和兩個(gè)角對(duì)應(yīng)相等,則可用ASA或SAS證明兩三角形全等;
如果給出三個(gè)角和任一邊對(duì)應(yīng)相等,可以ASA證明兩三角形全等.
所以兩個(gè)三角形有四對(duì)對(duì)應(yīng)元素相等,這兩個(gè)三角形一定全等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛高鐵與一輛動(dòng)車組列車在長(zhǎng)為1320千米的京滬高速鐵路上運(yùn)行,已知高鐵列車比動(dòng)車組列車平均速度每小時(shí)快99千米,且高鐵列車比動(dòng)車組列車全程運(yùn)行時(shí)間少3小時(shí),求這輛高鐵列車全程運(yùn)行的時(shí)間和平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y= x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長(zhǎng)為4,AD是BC邊上的中線,F是AD邊上的動(dòng)點(diǎn),E是AC邊上一點(diǎn).若AE=2,當(dāng)EF+CF取得最小值時(shí),∠ECF的度數(shù)為( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)(,是常數(shù),)的圖象過,兩點(diǎn).
(1)在圖中畫出該一次函數(shù)并求其表達(dá)式;
(2)若點(diǎn)在該一次函數(shù)圖象上,求的值;
(3)把的圖象向下平移3個(gè)單位后得到新的一次函數(shù)圖象,在圖中畫出新函數(shù)圖形,并直接寫出新函數(shù)圖象對(duì)應(yīng)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊中,為的中點(diǎn),點(diǎn)在的延長(zhǎng)線上,點(diǎn)在上,.若,則的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃購(gòu)買A,B兩種型號(hào)的電腦,已知購(gòu)買一臺(tái)A型電腦需0.6萬元,購(gòu)買一臺(tái)B型電腦需0.4萬元,該公司準(zhǔn)備投入資金y萬元,全部用于購(gòu)進(jìn)35臺(tái)這兩種型號(hào)的電腦,設(shè)購(gòu)進(jìn)A型電腦x臺(tái).
(1)求y關(guān)于x的函數(shù)解析式;
(2)若購(gòu)進(jìn)B型電腦的數(shù)量不超過A型電腦數(shù)量的2倍,則該公司至少需要投入資金多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個(gè)問題:探究函數(shù)y=x+|x﹣2|的圖象與性質(zhì)
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=x+|x﹣2|的圖象與性質(zhì)進(jìn)行了探究
下面是小明的探究過程,請(qǐng)補(bǔ)充完成:
(1)化簡(jiǎn)函數(shù)解析式,當(dāng)x≥2時(shí),y= ;當(dāng)x<2時(shí),y= ;
(2)根據(jù)(1)中的結(jié)果,請(qǐng)?jiān)趫D1的坐標(biāo)系中畫出函數(shù)y=x+|x﹣2|的圖象;
(3)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì): ;
(4)結(jié)合畫出的函數(shù)圖象,利用圖2解決問題,若關(guān)于x的方程ax+1=x+|x﹣2|有兩個(gè)實(shí)數(shù)根,直接寫出實(shí)數(shù)a的取值范圍: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com