【題目】如圖,四邊形ABCD是長(zhǎng)方形,∠A=ABC=BCD=CDA=90°,ABCD,ADBC,E是邊AD上一動(dòng)點(diǎn).

(1)若∠ECD=2ECB,求∠AEC的度數(shù).

(2)若∠ABD=70°,△DEF是等腰三角形,求∠ECB的度數(shù).

(3)若△EFD的面積為4,若△DCF的面積為6,則四邊形ABFE的面積為_______.

【答案】(1)AEC=150°;(2)20°80°;(3)11.

【解析】

(1)由∠ECD=2ECB和∠BCD=90°可得:∠ECD60o,BCE=30o,再由平行線的性質(zhì)可得到∠AEC=150°;

(2)由∠ABD=70o得到∠ADB=20o,當(dāng)EF=DF時(shí),∠DEF=20o;當(dāng)DE=DF時(shí),∠DEF=80o,再由平行線的性質(zhì)得到∠ECB=∠DEF;

(3) 由在矩形ABCD中,EFD的面積為4,FCD的面積為6,根據(jù)等高三角形的面積比等于對(duì)應(yīng)底的比,即可求得EFFEC,易得DEF∽△BEC,然后由相似三角形面積比等于相似比的平方,即可求得BFC的面積,繼而求得答案.

1)∵∠ECD=2ECB和∠BCD=90°,

∴∠ECD60o,BCE=30o,

又∵AD//BC,

∴∠AEC+BCE=180o,

AEC=150°

2)∵∠ABD=70o,∠A=90o,

∴∠ADB=20o,

又∵△DEF是等腰三角形,

DEDFEFDF

當(dāng)EFDF時(shí),∠FED=∠EDF20o,

當(dāng)DE=DF時(shí),∠DEF=80o,

又∵AD//BC,

∴∠EBC=∠DEF,

∴∠EBC=20o或80o;

(3) ∵△EFD的面積為4,FECD的面積為6,
EFFC=46=23,
∵四邊形ABCD是矩形,
ADBC,
∴△DEF∽△BFC,
SDEFSBFC=2=49,
SBFC=9
SABD=SBCD=SBFC+SCDE=15,
S陰影=SABD-SDEF=15-4=11

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍,實(shí)現(xiàn)翻番,為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下統(tǒng)計(jì)圖:

建設(shè)前經(jīng)濟(jì)收入構(gòu)成比例統(tǒng)計(jì)圖 建設(shè)后經(jīng)濟(jì)收入構(gòu)成比例統(tǒng)計(jì)圖

則下面結(jié)論中不正確的是( )

A. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍

B. 新農(nóng)村建設(shè)后,種植收入減少

C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半

D. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊長(zhǎng)和寬分別為60厘米和40厘米的長(zhǎng)方形鐵皮,要在它的四角截去四個(gè)相等的小正方形,折成一個(gè)無(wú)蓋的長(zhǎng)方體水槽,使它的底面積為800平方厘米.求截去正方形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知直線l1、l2,直線l3和直線l1、l2交于點(diǎn)CD,在直線l3上有動(dòng)點(diǎn)P(點(diǎn)P與點(diǎn)C、D不重合),點(diǎn)A在直線l1上,點(diǎn)B在直線l2上.

1)如果點(diǎn)PC、D之間運(yùn)動(dòng)時(shí),且滿足∠1+3=∠2,請(qǐng)寫出l1l2之間的位置關(guān)系 ;

2)如圖②如果l1l2,點(diǎn)P在直線l1的上方運(yùn)動(dòng)時(shí),試猜想∠1+2與∠3之間關(guān)系并給予證明;

3)如果l1l2,點(diǎn)P在直線l2的下方運(yùn)動(dòng)時(shí),請(qǐng)直接寫出∠PAC、∠PBD、∠APB之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小張準(zhǔn)備把一根長(zhǎng)為32cm的鐵絲剪成兩段,并把每一段各圍成一個(gè)正方形.(1)要使這兩個(gè)正方形的面積之和等于40cm2,小張?jiān)撛趺醇簦?/span>

(2)小李對(duì)小張說:“這兩個(gè)正方形的面積之和不可能等于30cm2.”他的說法對(duì)嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知∠1=∠2,∠BAD=∠BCD,則下列結(jié)論:ABCD,②ADBC,③∠B=∠D,④∠D=∠ACB,正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售每臺(tái)進(jìn)價(jià)分別為200元、150元的甲、乙兩種型號(hào)的電器,下表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

甲種型號(hào)

乙種型號(hào)

第一周

3臺(tái)

5臺(tái)

1900

第二周

4臺(tái)

10臺(tái)

3200

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入-進(jìn)貨成本)

⑴求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

⑵若超市準(zhǔn)備用不多于5000元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),且按(1)中的銷售單價(jià)全部售完利潤(rùn)不少于1850元,則有幾種購(gòu)貨方案?

⑶在⑵的條件下,超市銷售完這30臺(tái)電風(fēng)扇哪種方案利潤(rùn)最大?最大利潤(rùn)是多少?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A0,8),點(diǎn)B4,0),連接AB,點(diǎn)MN分別是OA,AB的中點(diǎn),在射線MN上有一動(dòng)點(diǎn)P.若△ABP是直角三角形,則點(diǎn)P的坐標(biāo)是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在崇仁一中中學(xué)生籃球賽中,小方共打了10場(chǎng)球他在第6,7,8,9場(chǎng)比賽中分別得了22,15,12和19分,他的前9場(chǎng)比賽的平均得分y比前5場(chǎng)比賽的平均得分x要高如果他所參加的10場(chǎng)比賽的平均得分超過18分

(1)用含x的代數(shù)式表示y;

(2)小方在前5場(chǎng)比賽中,總分可達(dá)到的最大值是多少?

(3)小方在第10場(chǎng)比賽中,得分可達(dá)到的最小值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案