【題目】已知:如圖,∠DAE=∠E,∠B=∠D.直線AD與BE平行嗎?直線AB與DC平行嗎?說明理由(請在下面的解答過程的空格內(nèi)填空或在括號內(nèi)填寫理由).
解:直線AD與BE平行,直線AB與DC .
理由如下:
∵∠DAE=∠E,(已知)
∴ ∥ ,(內(nèi)錯角相等,兩條直線平行)
∴∠D=∠DCE. (兩條直線平行,內(nèi)錯角相等)
又∵∠B=∠D,(已知)
∴∠B= ,(等量代換)
∴ ∥ .(同位角相等,兩條直線平行)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知正比例函數(shù)y= x的圖象與反比例函數(shù)y= 的圖象交于A(a,﹣2),B兩點.
(1)求反比例函數(shù)的表達式和點B的坐標;
(2)P是第一象限內(nèi)反比例函數(shù)圖象上一點,過點P作y軸的平行線,交直線AB于點C,連接PO,若△POC的面積為3,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標為(3,2).點D、E分別在AB、BC邊上,BD=BE=1.沿直線DE將△BDE翻折,點B落在點B′處.則點B′的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系 中,已知點 , .若平移點 到點 ,使以點 , , , 為頂點的四邊形是菱形,則正確的平移方法是( )
A.向左平移1個單位,再向下平移1個單位
B.向左平移 個單位,再向上平移1個單位
C.向右平移 個單位,再向上平移1個單位
D.向右平移1個單位,再向上平移1個單位
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為6的正方形,點E在邊AB上,BE=4,過點E作EF∥BC,分別交BD、CD于G、F兩點.若M、N分別是DG、CE的中點,則MN的長為 ( )
A.3
B.
C.
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的邊OA,OC分別在x軸、y軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線OD對稱(點A′和A,B′和B分別對應(yīng)).若AB=1,反比例函數(shù)y= (k≠0)的圖象恰好經(jīng)過點A′,B,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,線段AM為BC邊上的中線.動點D在直線AM上時,以CD為一邊在CD的下方作等邊△CDE,連結(jié)BE.
(1)求∠CAM的度數(shù);
(2)若點D在線段AM上時,求證:△ADC≌△BEC;
(3)當動D在直線AM上時,設(shè)直線BE與直線AM的交點為O,試判斷∠AOB是否為定值?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關(guān)系如圖所示.下列說法:①乙車的速度是120km/h;②m=160;③點H的坐標是(7,80);④n=7.5.其中說法正確的有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋中有除顏色外其他完全相同的3個球,每次從袋中摸出一個球,記下顏色后放回攪勻再摸,在摸球試驗中得到下表中部分數(shù)據(jù):
摸球 總次數(shù) | 40 | 80 | 120 | 160 | 200 | 240 | 280 | 320 | 360 | 400 |
摸到黃球的次數(shù) | 14 | 23 | 38 | 52 | 67 | 86 | 97 | 111 | 120 | 136 |
摸到黃球的頻率 | 35% | 32% | 33% | 35% | 35% |
(1)請將上表補充完整(結(jié)果精確到1%);
(2)制作折線統(tǒng)計圖表示摸到黃球的頻率的變化情況;
(3)估計從袋中摸出一個球是黃球的概率是多少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com