【題目】ABC中,∠C90°,∠BAC的平分線交BCD,且CD15,AC30,求AB的長.

【答案】50

【解析】

DEAB于點(diǎn)E,由得出,然后證得△ABC∽△DBE,則,設(shè)BDxBEy,則,解得x2y15,在RtDBE中,BD2DE2+BE2,即(2y152y2+152,求得y的值,即可求得AB

解:如圖,作DEAB于點(diǎn)E,則∠BED90°,

AD平分

中,

∴∠BED=∠C90°,

∵∠EBD=∠ABC,

∴△ABC∽△DBE

,

設(shè)BDx,BEy,

,

x2y15

RtDBE中,BD2DE2+BE2,

即(2y152y2+152

y20,

ABAE+BE30+2050

故答案為:50

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的高,角平分線,若.

1)求的度數(shù);

2)求的度數(shù);

3)若點(diǎn)為線段上任意一點(diǎn),當(dāng)為直角三角形時(shí),則求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與坐標(biāo)軸分別交于、兩點(diǎn),拋物線、兩點(diǎn),點(diǎn)為線段上一動(dòng)點(diǎn),過點(diǎn)軸于點(diǎn),交拋物線于點(diǎn)

求拋物線的解析式.

面積的最大值.

連接,是否存在點(diǎn),使得相似?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形是邊長為的正方形,以為直徑向正方形內(nèi)作半圓,為半圓上一動(dòng)點(diǎn)(不與、重合),當(dāng)________時(shí),為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:兩條對角線相等的四邊形是矩形;有一組對邊相等,一組對角是直角的四邊形是矩形;有一個(gè)角為直角,兩條對角線相等的四邊形是矩形;四個(gè)角都相等的四邊形是矩形相鄰兩邊都互相垂直的四邊形是矩形.其中判斷正確的個(gè)數(shù)是(

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為矩形ABCD對角線交點(diǎn),,點(diǎn)E、F、G分別從D,C,B三點(diǎn)同時(shí)出發(fā),沿矩形的邊DC、CB、BA勻速運(yùn)動(dòng),點(diǎn)E的運(yùn)動(dòng)速度為,點(diǎn)F的運(yùn)動(dòng)速度為,點(diǎn)G的運(yùn)動(dòng)速度為,當(dāng)點(diǎn)F到達(dá)點(diǎn)點(diǎn)F與點(diǎn)B重合時(shí),三個(gè)點(diǎn)隨之停止運(yùn)動(dòng)在運(yùn)動(dòng)過程中,關(guān)于直線EF的對稱圖形是設(shè)點(diǎn)E、F、G運(yùn)動(dòng)的時(shí)間為單位:

當(dāng)______s時(shí),四邊形為正方形;

若以點(diǎn)E、C、F為頂點(diǎn)的三角形與以點(diǎn)F、B、G為頂點(diǎn)的三角形相似,求t的值;

是否存在實(shí)數(shù)t,使得點(diǎn)與點(diǎn)O重合?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計(jì)劃購進(jìn)一批甲、乙兩種玩具,已知件甲種玩具的進(jìn)價(jià)與件乙種玩具的進(jìn)價(jià)的和為元,件甲種玩具的進(jìn)價(jià)與件乙種玩具的進(jìn)價(jià)的和為元.

1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元;

2)如果購進(jìn)甲種玩具有優(yōu)惠,優(yōu)惠方法是:購進(jìn)甲種玩具超過件,超出部分可以享受折優(yōu)惠,若購進(jìn)件甲種玩具需要花費(fèi)元,請你寫出的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩塊全等的三角板如圖1擺放,其中∠A1CB1=∠ACB90°,∠A1=∠A30°

1)將圖1A1B1C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)45°得圖2,點(diǎn)P1A1CAB的交點(diǎn),點(diǎn)QA1B1BC的交點(diǎn),求證:CP1CQ;

2)在圖2中,若AP1a,則CQ等于多少?

3)將圖2A1B1C點(diǎn)C順時(shí)針旋轉(zhuǎn)到A2B2C(如圖3),點(diǎn)P2A2CAP1的交點(diǎn).當(dāng)旋轉(zhuǎn)角為多少度時(shí),有AP1C∽△CP1P2?這時(shí)線段CP1P1P2之間存在一個(gè)怎樣的數(shù)量關(guān)系?.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與軸交于點(diǎn),與軸交于點(diǎn),且經(jīng)過點(diǎn)

(1)當(dāng)時(shí);

①求一次函數(shù)的表達(dá)式;

平分軸于點(diǎn),求點(diǎn)的坐標(biāo);

(2)若△為等腰三角形,求的值;

(3)若直線也經(jīng)過點(diǎn),且,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案