【題目】已知,是關(guān)于的方程的兩實根,實數(shù)、、、的大小關(guān)系可能是( )
A. α<a<b<β B. a<α<β<b C. a<α<b<β D. α<a<β<b
【答案】A
【解析】
首先把方程化為一般形式,由于α,β是方程的解,根據(jù)根與系數(shù)的關(guān)系即可得到a,b,α,β之間的關(guān)系,然后對四者之間的大小關(guān)系進行討論即可判斷.
解:設(shè)y=(x-a)(x-b),
則此二次函數(shù)開口向上,
當(dāng)(x-a)(x-b)=0時,
即函數(shù)與x軸的交點為:(a,0),(b,0),
當(dāng)(x-a)(x-b)=1時,
∵α,β是關(guān)于x的方程(x-a)(x-b)-1=0的兩實根,
∴函數(shù)與y=1的交點為:(α,0),(β,0),
根據(jù)二次函數(shù)的增減性,可得:
當(dāng)a<b,α<β時,α<a<b<β;
當(dāng)b<a,α<β時,α<b<a<β;
當(dāng)b>a,α>β時,β<a<b<α;
當(dāng)a>b,α>β時,β<b<a<α.
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB:y=kx+3(k≠0)交x軸于點A(4,0),交y軸正半軸于點B,過點C(0,2)作y軸的垂線CD交AB于點E,點P從E出發(fā),沿著射線ED向右運動,設(shè)PE=n.
(1)求直線AB的表達式;
(2)當(dāng)△ABP為等腰三角形時,求n的值;
(3)若以點P為直角頂點,PB為直角邊在直線CD的上方作等腰Rt△BPM,試問隨著點P的運動,點M是否也在直線上運動?如果在直線上運動,求出該直線的解析式;如果不在直線上運動,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
[問題]如圖1,在中,,過點作直線平行于,點在直線上移動,角的一邊DE始終經(jīng)過點,另一邊與交于點,研究和的數(shù)量關(guān)系.
[探究發(fā)現(xiàn)]
(1)如圖2,某數(shù)學(xué)學(xué)習(xí)小組運用“從特殊到一般”的數(shù)學(xué)思想,發(fā)現(xiàn)當(dāng)點移動到使點與點重合時,很容易就可以得到請寫出證明過程;
[數(shù)學(xué)思考]
(2)如圖3,若點是上的任意一點(不含端點),受(1)的啟發(fā),另一個學(xué)習(xí)小組過點,交于點,就可以證明,請完成證明過程;
[拓展引申]
(3)若點是延長線上的任意一點,在圖(4)中補充完整圖形,并判斷結(jié)論是否仍然成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,回答問題:
兩個含有二次根式的代數(shù)式相乘,如果它們的積不含有二次根式,我們就說這兩個代數(shù)式互為有理化因式.例如:因為,,所與,與互為有理化因式.
(1)的有理化因式是 ;
(2)這樣,化簡一個分母含有二次根式的式子時,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:
,
用上述方法對進行分母有理化.
(3)利用所需知識判斷:若,,則的關(guān)系是 .
(4)直接寫結(jié)果: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的邊AB為直徑作⊙O交AC于點E且AE=CE,過點E作DE⊥BC于點D.
(1)求證ED是⊙O的切線;
(2)若CD=1,sinC=,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長方形的長和寬分別是a厘米、b厘米,如果長方形的長和寬各減少2厘米.
(1)新長方形的面積比原長方形的面積減少了多少平方厘米?
(2)如果減少的面積恰好等于原面積的,試確定(a﹣6)(b﹣6)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人以相同路線前往距離單位10km的培訓(xùn)中心參加學(xué)習(xí),圖中,分別表示甲、乙兩人前往目的地所走的路程s(千米)隨時間t(分)變化的函數(shù)圖象,以下說法:①甲比乙提前12分到達;②甲的平均速度為15千米/時;③甲乙相遇時,乙走了6千米;④乙出發(fā)6分鐘后追上甲.其中正確的有( )
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖I,在中,.點在外,連接,作,交于點,,,連接.則間的等量關(guān)系是______;(不用證明)
(2)如圖Ⅱ,,,,延長交于點,寫出間的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個拱形橋架可以近似看作是由等腰梯形ABD8D1和其上方的拋物線D1OD8組成.若建立如圖所示的直角坐標(biāo)系,跨度AB=44米,∠A=45°,AC1=4米,點D2的坐標(biāo)為(-13,-1.69),則橋架的拱高OH=________米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com