【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(21),B(1-2),C(3,-1)P(m,n)是△ABC的邊AB上一點(diǎn).

(1)畫出△A1B1C1,使△A1B1C1與△ABC關(guān)于點(diǎn)O成中心對稱,并寫出點(diǎn)A、P的對應(yīng)點(diǎn)A1P1的坐標(biāo).

(2)以原點(diǎn)O為位似中心,位似比為12,在y軸的左側(cè),畫出將△A1B1C1放大后的△A2B2C2,并分別寫出點(diǎn)A1、P1的對應(yīng)點(diǎn)A2P2的坐標(biāo).

(3)sinB2A2C2的值.

【答案】(1)畫圖見解析;A1(-2,-1),P1(-m-n);(2)畫圖見解析,A2(-4-2),P2(-2m-2n);(3)sinB2A2C2=.

【解析】

(1)作出ABC各點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn),再順次連接,再根據(jù)原點(diǎn)對稱圖形性質(zhì)求出A1P1的坐標(biāo);

(2)利用位似圖形的性質(zhì)得出對應(yīng)點(diǎn)位置即可得出答案;

(3)證實(shí)ABC為等腰直角三角形及ABCA2 B2C2相似即可求出結(jié)果.

解:(1)如圖,A1(-2,-1),P1(-m,-n);

(2)如圖,A2(-4,-2)P2(-2m,-2n);

(3) AC=,BC=,AB=,

,AC=BC

ABC為等腰直角三角形,

又∵△ABCA1B1C1關(guān)于原點(diǎn)對稱,A1B1C1A2 B2C2相似,

ABCA2 B2C2相似,A2 B2C2是等腰直角三角形,

sinB2A2C2= sin45°=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某路燈在鉛錘面內(nèi)的示意圖,燈柱AC的高為15.25米,燈桿AB與燈柱AC的夾角∠A120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為22米,從D、E兩處測得路燈B的仰角分別為αβ,且tanα8,tanβ,求燈桿AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自行車因其便捷環(huán)保深受人們喜愛,成為日常短途代步與健身運(yùn)動(dòng)首選.如圖1是某品牌自行車的實(shí)物圖,圖2是它的簡化示意圖.經(jīng)測量,車輪的直徑為66cm,車座B到地面的距離BE90cm,中軸軸心C到地面的距離CF33cm,車架中立管BC的長為60cm,后輪切地面L于點(diǎn)D.(參考數(shù)據(jù):sin720.95,cos18°≈0.95tan43.5°≈0.9 5

1)求∠ACB的大。ň_到1°)

2)如果希望車座B到地面的距離B'E′為96.8cm,車架中立管BC拉長的長度BB′應(yīng)是多少?(結(jié)果取整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC,∠BAC90°BC5,AC2,以A為圓心、AB為半徑畫圓,與邊BC交于另一點(diǎn)D

1)求BD的長;

2)連接AD,求∠DAC的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2﹣4y=﹣ax2+4都經(jīng)過x軸上的A、B兩點(diǎn),兩條拋物線的頂點(diǎn)分別為C、D.當(dāng)四邊形ACBD的面積為40時(shí),a的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線(其中、為常數(shù)且)與軸交于兩點(diǎn),與軸交于點(diǎn).

1)當(dāng)時(shí),求拋物線的對稱軸方程及頂點(diǎn)坐標(biāo);

2)填空:__________,點(diǎn)的坐標(biāo)為____________.(以上結(jié)果均用含的式子表示);

3)連接,線段的垂直平分線交拋物線的對稱軸于點(diǎn),軸上存在一點(diǎn)(異于點(diǎn))使得.

①求點(diǎn)的坐標(biāo);

②點(diǎn)關(guān)于拋物線對稱軸的對稱點(diǎn)為點(diǎn),試求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BE⊙O的直徑,點(diǎn)AEB的延長線上,弦PD⊥BE,垂足為C,連接OD

∠AOD=∠APC

1)求證:AP⊙O的切線;

2)若⊙O的半徑是4,AP=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】O的半徑為,點(diǎn)M的坐標(biāo)為(m,3),若在圓O上存在一點(diǎn)N, M、N為正方形的兩個(gè)頂點(diǎn),且正方形的邊均與兩條坐標(biāo)軸垂直,則m的最小值為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校初二體育考試選擇項(xiàng)目中,選擇籃球項(xiàng)目和排球項(xiàng)目的學(xué)生比較多.為了解學(xué)生掌握籃球技巧和排球技巧的水平?jīng)r,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整下題表格.

收集數(shù)據(jù):從選擇籃球和排球的學(xué)生各隨機(jī)抽取10人,進(jìn)行了測試,測試成績?nèi)缦拢?/span>

排球9 9.5 9 9 8 10 9.5 8 4 9.5

籃球9.5 9.5 8.5 8.5 10 9.5 6 8 6 9

整理、描述數(shù)據(jù):按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

項(xiàng)目

人數(shù)

成績x

4.0x5.5

5.5x7.0

7.0x8.5

8.5x10

10

排球

1

0

2

6

1

籃球

0

2

1

6

1

(說明:成績8.5分及以上為優(yōu)秀,6分及以上為合格,6分以下為不合格.)

分折數(shù)據(jù)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:

項(xiàng)目

平均數(shù)

中位數(shù)

眾數(shù)

排球

8.55

a

99.5

籃球

8.45

8.75

b

應(yīng)用數(shù)據(jù)

1)填空:a   ,b   

p>2)初三年級(jí)的小偉和小明看到上面數(shù)據(jù)后,小偉說:排球項(xiàng)目整體水平較高:小明說:籃球項(xiàng)目整體水平較高.你同意   的看法,理由為:   ;   .(從兩個(gè)不同的角度說明推理的合理性)

3)如果初二年級(jí)有180人選排球項(xiàng)目,請信計(jì)該年級(jí)排球項(xiàng)目獲得優(yōu)秀的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案