【題目】如圖,在方格紙中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度有一個(gè)△ABC,它的三個(gè)頂點(diǎn)均與小正方形的頂點(diǎn)重合.

1)將△ABC向右平移3個(gè)單位長(zhǎng)度,得到△DEFAD、BE、CF對(duì)應(yīng)),請(qǐng)?jiān)诜礁窦堉挟?huà)出△DEF;

2)在(1)的條件下,連接AECE,請(qǐng)直接寫(xiě)出△ACE的面積S,并判斷B是否在邊AE上.

【答案】(1)見(jiàn)解析;(29

【解析】

1)根據(jù)圖形平移的性質(zhì)畫(huà)出平移后的三角形即可;

2)連接AECE,利用矩形的面積減去三個(gè)頂點(diǎn)上三角形的面積即可得出S的值,根據(jù)圖形可得出點(diǎn)B的位置.

解:(1)如圖所示;

2)由圖可知,S5×4×4×1×2×4×2×5202459

根據(jù)圖形可知,點(diǎn)B不在AE邊上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2-(2k+1)x+k2+k=0.

(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

(2)若△ABC的兩邊AB,AC的長(zhǎng)是這個(gè)方程的兩個(gè)實(shí)數(shù)根,第三邊BC的長(zhǎng)為5,當(dāng)△ABC是等腰三角形時(shí),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象與軸交于點(diǎn),與軸交于點(diǎn),過(guò)的中點(diǎn)的直線軸于點(diǎn)

1)求,兩點(diǎn)的坐標(biāo)及直線的函數(shù)表達(dá)式;

2)若坐標(biāo)平面內(nèi)的點(diǎn),能使以點(diǎn),,,為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)直接寫(xiě)出滿(mǎn)足條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖所示,ADBCD,EFBCF,∠3=∠E,說(shuō)明AD是∠BAC的角平分線請(qǐng)你完成下列說(shuō)理過(guò)程(在橫線上填上適當(dāng)?shù)膬?nèi)容,在括號(hào)內(nèi)寫(xiě)出說(shuō)理依據(jù)).

理由:∵ADBCEFBC(已知)

∴∠4=∠590°   ),

ADEF   ),

∴∠1      ),

2      ),

又∵∠E=∠3(已知)

      ),

AD是∠BAC的角平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是拋物線y=x2在第一象限內(nèi)的一點(diǎn),點(diǎn)A的坐標(biāo)是(3,0).設(shè)點(diǎn)P的坐標(biāo)為(x,y).

(1)求△OPA的面積S關(guān)于變量y的關(guān)系式;

(2)S是x的什么函數(shù)?

(3)當(dāng)S=6時(shí),求點(diǎn)P的坐標(biāo);

(4)在y=x2的圖象上求一點(diǎn)P′,使△OP′A的兩邊OP′=P′A.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,點(diǎn)邊上,相交于點(diǎn).下列說(shuō)法:

1)若,則;

2)若,則

3)若,,則

其中正確的有( 。﹤(gè).

A. 3個(gè)B. 2個(gè)C. 1個(gè)D. 0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A0,a),Bb,0),其中a,b滿(mǎn)足|a﹣2|+b﹣32=0

1)求ab的值;

2)如果在第二象限內(nèi)有一點(diǎn)Mm,1),請(qǐng)用含m的式子表示四邊形ABOM的面積;

3)在(2)條件下,當(dāng)m= 時(shí),在坐標(biāo)軸的負(fù)半軸上是否存在點(diǎn)N,使得四邊形ABOM的面積與△ABN的面積相等?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,∠AGF=∠ABC,∠1+2180°

(1)試判斷BFDE的位置關(guān)系?并說(shuō)明理由;

(2)如果,DEAC,∠2150°,求∠AFG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形中,,再添加下列其中一個(gè)條件后,四邊形不一定是平行四邊形的是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案