【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上,已知DE=1米,EF=0.5米,測點D到地面的距離DG=3米,到旗桿的水平距離DC=40米,求旗桿的高度.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售某款童裝,每件售價60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價銷售.市場調(diào)查反映:每降價1元,每星期可多賣30件.已知該款童裝每件成本價40元,設(shè)該款童裝每件售價x元,每星期的銷售量為y件.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)每件售價定為多少元時,每星期的銷售利潤最大,最大利潤多少元?
(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某貨車銷售公司,分別試銷售兩種型號貨車各一個月,并從中選擇一種長期銷售,設(shè)每月銷售量為x輛若銷售甲型貨車,每月銷售的利潤為y1(萬元),已知每輛甲型貨車的利潤為(m+6)萬元,(m是常數(shù),9≤m≤11),每月還需支出其他費用8萬元,受條件限制每月最多能銷售甲型貨車25輛;若銷售乙型貨車,每月的利潤y2(萬元)與x的函數(shù)關(guān)系式為y2=ax2+bx-25,且當(dāng)x=10時,y2=20,當(dāng)x=20時,y2=55,受條件限制每月最多能銷售乙型貨車40輛.
(1)分別求出y1、y2與x的函數(shù)關(guān)系式,并確定x的取值范范圍;
(2)分別求出銷售這兩種貨車的最大月利潤;(最大利潤能求值的求值,不能求值的用式子表示)
(3)為獲得最大月利潤,該公司應(yīng)該選擇銷售哪種貨車?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A(-5,0),以OA為半徑作半圓,點C是第一象限內(nèi)圓周上一動點,連結(jié)AC、BC,并延長BC至點D,使CD=BC,過點D作x軸垂線,分別交x軸、直線AC于點E、F,點E為垂足,連結(jié)OF.
(1)當(dāng)∠BAC=30時,求△ABC的面積;
(2)當(dāng)DE=8時,求線段EF的長;
(3)在點C運(yùn)動過程中,是否存在以點E、O、F為頂點的三角形與△ABC相似,若存在,請求出點E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AB=2,∠A=120°,點E、F分別在邊AB、AD上且AE=DF,則△AEF面積的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在甲乙兩個不透明的口袋中,分別有大小、材質(zhì)完全相同的小球,其中甲口袋中的小球上分別標(biāo)有數(shù)字1,2,3,4,乙口袋中的小球上分別標(biāo)有數(shù)字2,3,4,先從甲袋中任意摸出一個小球,記下數(shù)字為m,再從乙袋中摸出一個小球,記下數(shù)字為n.
(1)請用列表或畫樹狀圖的方法表示出所有(m,n)可能的結(jié)果;
(2)若m,n都是方程x2﹣5x+6=0的解時,則小明獲勝;若m,n都不是方程x2﹣5x+6=0的解時,則小利獲勝,問他們兩人誰獲勝的概率大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣3ax+c的圖象與x軸交于點A、B,與y軸交于點c直線y=﹣x+4經(jīng)過點B、C.
(1)求拋物線的表達(dá)式;
(2)過點A的直線y=kx+k交拋物線于點M,交直線BC于點N,連接AC,當(dāng)直線y=kx+k平分△ABC的面積,求點M的坐標(biāo);
(3)如圖2,把拋物線位于x軸上方的圖象沿x軸翻折,當(dāng)直線y=kx+k與翻折后的整個圖象只有三個交點時,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(2,0)兩點,與y軸交于點C.
(1)求該拋物線的解析式及點C的坐標(biāo);
(2)直線y=﹣x﹣2與該拋物線在第四象限內(nèi)交于點D,與x軸交于點F,連接AC,CD,線段AC與線段DF交于點G,求證:△AGF≌△CGD;
(3)直線y=m(m>0)與該拋物線的交點為M,N(點M在點N的左側(cè)),點M關(guān)于y軸的對稱點為點M′,點H的坐標(biāo)為(1,0),若四邊形NHOM′的面積為,求點H到OM′的距離d.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,若△ABC的面積為S△ABC=36cm2,則梯形EDBC的面積SEDBC為( 。
A.9B.18C.27D.30
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com