【題目】如圖,菱形ABCD中,AB=2,∠A=120°,點E、F分別在邊AB、AD上且AE=DF,則△AEF面積的最大值為_____.
【答案】
【解析】
過點E作EM⊥AD交DA的延長線于點M,設(shè)AE=x,則AE=DF=x,根據(jù)菱形的性質(zhì)表示AF,在△AME中通過銳角三角函數(shù)表示EM,根據(jù)三角形面積公式表示△AEF的面積,再利用二次函數(shù)的頂點式求出面積的最大值.
解:過點E作EM⊥AD交DA的延長線于點M,設(shè)AE=x,則AE=DF=x,
∵四邊形ABCD是菱形,∠A=120°,
∴AB=AD=2,∠MAE=60°,
∴AF=2﹣x,
∴EM=AEsin60°=x,
∴S△AEF=AFEM=(2﹣x)×x=﹣(x﹣1)2+,
∴△AEF面積的最大值為 ,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副撲克牌中的張黑桃牌(它們的正面牌面數(shù)字分別是、、)洗勻后正面朝下放在桌面上.
(1)如果從中隨機(jī)抽取一張牌,那么牌面數(shù)字是的概率是多少?
(2)小王和小李玩摸牌游戲,游戲規(guī)則如下:先由小王隨機(jī)抽出一張牌,記下牌面數(shù)字后放回,洗勻后正面朝下,再由小李隨機(jī)抽出一張牌,記下牌面數(shù)字.當(dāng)張牌面數(shù)字相同時,小王贏;當(dāng)張牌面數(shù)字不相同時,則小李贏.現(xiàn)請你利用樹形圖或列表法分析游戲規(guī)則對雙方是否公平?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分9分)
根據(jù)要求,解答下列問題.
(1)根據(jù)要求,解答下列問題.
①方程x2-2x+1=0的解為________________________;
②方程x2-3x+2=0的解為________________________;
③方程x2-4x+3=0的解為________________________;
…… ……
(2)根據(jù)以上方程特征及其解的特征,請猜想:
①方程x2-9x+8=0的解為________________________;
②關(guān)于x的方程________________________的解為x1=1,x2=n.
(3)請用配方法解方程x2-9x+8=0,以驗證猜想結(jié)論的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,點D是等邊三角形ABC的外接圓上的一點,過點D作圓的切線,交BC的延長線于F.
(1)用尺規(guī)作圖,作出等邊三角形ABC外接圓的圓心O;
(2)若⊙O的半徑為2,∠F=45°,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示:
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)以原點O為位似中心,在y軸左側(cè)將△A1B1C1放大為原來的2倍,得到△A2B2C2,請畫出△A2B2C2;
(3)設(shè)P(x,y)為△ABC內(nèi)任意一點,△A2B2C2內(nèi)的點P′是點P經(jīng)過上述兩次變換后的對應(yīng)點,請直接寫出P′的坐標(biāo)___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上,已知DE=1米,EF=0.5米,測點D到地面的距離DG=3米,到旗桿的水平距離DC=40米,求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,點是邊上的任一點,連接并將線段繞點順時針旋轉(zhuǎn)得到線段,在邊上取點使,連接.
(1)求證:四邊形是平行四邊形;
(2)線段與交于點,連接,若,則與存在怎樣的數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點坐標(biāo)為(,﹣2);⑤當(dāng)x<時,y隨x的增大而減小;⑥a+b+c>0正確的有( 。
A. 3個 B. 4個 C. 5個 D. 6個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com