【題目】如圖,正方形和正三角形都內(nèi)接于,與,分別相交于點,,則的值是________.
【答案】
【解析】
設⊙O的半徑是r,則OF=r,求出∠COF=60°,在Rt△OIF中,求出FI和OI的值,進而得到CI和EF的值,再根據(jù)EF∥BD,得出△CGH∽△CBD,根據(jù)相似三角形的性質(zhì)求出GH的值即可.
解:如圖,連接AC、BD、OF,AC與EF交于點I,
設⊙O的半徑是r,則OF=r,
∵AO是∠EAF的平分線,
∴∠OAF=30°,
∵OA=OF,
∴∠OFA=∠OAF=30°,
∴∠COF=30°+30°=60°,
∵AC⊥EF,
∴FI=r·sin60°=,OI=
∴EF=2FI=,CI=,
∵AC⊥EF,AC⊥BD,
∴EF∥BD,
∴△CGH∽△CBD,
∴,
∴GH=BD=r,
∴.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】某學校組織七年級學生進行“垃圾分類”知識測試,現(xiàn)隨機抽取部分學生的成績進行統(tǒng)計,并繪制如下頻數(shù)分布表以及頻數(shù)分布直方圖.
分數(shù)檔 | 分數(shù)段/分 | 頻數(shù) | 頻率 |
A | 90<x≤100 | a | 0.12 |
B | 80<x≤90 | b | 0.18 |
C | 70<x≤80 | 20 | c |
D | 60<x≤70 | 15 | d |
請根據(jù)以上信息,解答下列問題:
(1)已知A,B檔的學生人數(shù)之和等于D檔學生人數(shù),求被抽取的學生人數(shù),并把頻數(shù)分布直方圖補充完整.
(2)該校七年級共有200名學生參加測試,請估計七年級成績在C檔的學生人數(shù).
(3)你能確定被抽取的這些學生的成績的眾數(shù)在哪一檔嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小麗從學校去圖書館,小紅沿同一條路從圖書館回學校,她們同時出發(fā),小麗開始跑步中途改為步行,到達圖書館恰好用30分鐘,小紅騎自行車回學校,兩人離學校的路程與各自離開出發(fā)地的時間(分鐘)之間的函數(shù)圖象如圖所示.
(1)小紅騎自行車的速度是_____米/分鐘,小麗從學校到圖書館的平均速度是_____米/分鐘;
(2)求小麗從學校去圖書館時,與之間的函數(shù)關系式;
(3)兩人出發(fā)后多少分鐘相遇,相遇地點離圖書館的路程是多少米.(結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形中,AB=8,BC=6,點是射線上一動點,設.過點做射線的垂線段,垂足為,作的垂直平分線交射線于點,交直線于.
點在邊上時.①用含的代數(shù)式表示.②當時,直線ON交射線CD于,求CE的長.
當為何值時,過三點的圓與矩形的邊或?qū)蔷相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB=4cm,點C為線段AB上一動點,過點C作AB的垂線交⊙O于點D,E,連結(jié)AD,AE.設AC的長為xcm,△ADE的面積為ycm2.
小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小東的探究過程,請補充完整:
(1)確定自變量x的取值范圍是 ;
(2)通過取點、畫圖、測量、分析,得到了y與x的幾組對應值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
y/cm2 | 0 | 0.7 | 1.7 | 2.9 |
| 4.8 | 5.2 | 4.6 | 0 |
(3)如圖,建立平面直角坐標系xOy,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;
(4)結(jié)合畫出的函數(shù)圖象,解決問題:當△ADE的面積為4cm2時,AC的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了鍛煉學生身體素質(zhì),訓練定向越野技能,某校在一公園內(nèi)舉行定向越野挑戰(zhàn)賽.路線圖如圖所示,點為矩形邊的中點,在矩形的四個頂點處都有定位儀,可監(jiān)測運動員的越野進程,其中一位運動員從點出發(fā),沿著的路線勻速行進,到達點.設運動員的運動時間為,到監(jiān)測點的距離為.現(xiàn)有與的函數(shù)關系的圖象大致如圖所示,則這一信息的來源是( ).
A. 監(jiān)測點 B. 監(jiān)測點 C. 監(jiān)測點 D. 監(jiān)測點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,E為∠ACB平分線CD上一動點(不與點C重合),點E關于直線BC的對稱點為F,連接AE并延長交CB延長線于點H,連接FB并延長交直線AH于點G.
(1)求證:AE=BF.
(2)用等式表示線段FG,EG與CE的數(shù)量關系,并證明.
(3)連接GC,用等式表示線段GE,GC與GF的數(shù)量關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在北京市開展的“首都少年先鋒崗”活動中,某數(shù)學小組到人民英雄紀念碑站崗執(zhí)勤,并在活動后實地測量了紀念碑的高度. 方法如下:如圖,首先在測量點A處用高為1.5m的測角儀AC測得人民英雄紀念碑MN頂部M的仰角為35°,然后在測量點B處用同樣的測角儀BD測得人民英雄紀念碑MN頂部M的仰角為45°,最后測量出A,B兩點間的距離為15m,并且N,B,A三點在一條直線上,連接CD并延長交MN于點E. 請你利用他們的測量結(jié)果,計算人民英雄紀念碑MN的高度.
(參考數(shù)據(jù):sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com