【題目】如圖,直線l:y=x﹣ 與x軸正半軸、y軸負(fù)半軸分別相交于A、C兩點(diǎn),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B(﹣1,0)和點(diǎn)C.
(1)填空:直接寫(xiě)出拋物線的解析式:_____;
(2)已知點(diǎn)Q是拋物線y=x2+bx+c在第四象限內(nèi)的一個(gè)動(dòng)點(diǎn).
①如圖,連接AQ、CQ,設(shè)點(diǎn)Q的橫坐標(biāo)為t,△AQC的面積為S,求S與t的函數(shù)關(guān)系式,并求出S的最大值;
②連接BQ交AC于點(diǎn)D,連接BC,以BD為直徑作⊙I,分別交BC、AB于點(diǎn)E、F,連接EF,求線段EF的最小值,并直接寫(xiě)出此時(shí)Q點(diǎn)的坐標(biāo).
【答案】(1)(2)①, ,②,點(diǎn)的坐標(biāo)為.
【解析】試題分析:(1)令,求出直線與y軸的交點(diǎn)即C點(diǎn)坐標(biāo),再用待定系數(shù)法求二次函數(shù)解析式即可;(2)①在直線中,令,得到點(diǎn)A的坐標(biāo),連接,由即可得到與的函數(shù)關(guān)系;②由點(diǎn)得. 作直徑交⊙于點(diǎn),連接,當(dāng)時(shí),此時(shí)直徑最小,即直徑最小, 的值最小. , = =,
求出點(diǎn)的坐標(biāo).
試題解析:(1)在直線中,令,則,∴點(diǎn)
把點(diǎn)與點(diǎn)代入,得: ,解得: ,
∴拋物線的解析式為: .
(2) ①連接,在直線中,令,則,
∴點(diǎn).
∵,
∴,
∴,
, .
∴當(dāng)時(shí), .
②∵∴, .
在中,
∴.
作直徑交⊙于點(diǎn),連接,則,
又, ,
,
當(dāng)時(shí),此時(shí)直徑最小,即直徑最小, 的值最小.
,
∴,
∴,
此時(shí)點(diǎn)的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的有( ) ①﹣(﹣3)的相反數(shù)是﹣3
②近似數(shù)1.900×105精確到百位
③代數(shù)式|x+2|﹣3的最小值是0
④兩個(gè)六次多項(xiàng)式的和一定是六次多項(xiàng)式.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué);顒(dòng)小組在作三角形的拓展圖形,研究其性質(zhì)時(shí),經(jīng)歷了如下過(guò)程:
操作發(fā)現(xiàn):
(1)已知,△ABC,如圖1,分別以AB和AC為邊向△ABC外側(cè)作等邊△ABD和等邊△ACE,連接BE、CD,請(qǐng)你完成作圖 , 并猜想BE與CD的數(shù)量關(guān)系是 . (要求:尺規(guī)作圖,不寫(xiě)作法但保留作圖痕跡)
類(lèi)比探究:
(2)如圖2,分別以AB和AC為邊向△ABC外側(cè)作正方形ABDE和正方形ACFG,連接CE、BG,則線段CE、BG有什么關(guān)系?說(shuō)明理由.
靈活運(yùn)用:
(3)如圖3,已知△ABC中,∠ABC=45°,AB=2 ,BC=3,過(guò)點(diǎn)A作EA⊥AC,垂足為A,且滿足AC=AE,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】幼兒園智慧樹(shù)班某次能力測(cè)驗(yàn)有人參加,這次測(cè)驗(yàn)共有五道題,并且每人至少做對(duì)了一道題每道題至少有一人做對(duì),只做對(duì)一道題的有8人,五道題全做對(duì)的有27人,只做對(duì)兩道題的人數(shù)是只做三道題的人數(shù)的2倍.
(1)答對(duì)四道題的有n人,那么只做對(duì)三道題的人數(shù)可以用含m與n的代數(shù)式表示為____________;
(2)(1)中的m=42,那么n可以是多少?請(qǐng)說(shuō)明理由;
(3)統(tǒng)計(jì)了每道題做錯(cuò)的人數(shù)如下表:
題 號(hào) | 1 | 2 | 3 | 4 | 5 |
做錯(cuò)的人數(shù) | 5 | 8 | 14 | 23 | 45 |
若m=73,請(qǐng)根據(jù)上表求n.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:(1)10m×10 000=_________; (2)3n-4×(-3)3×35-n=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=﹣x2+1的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,下列說(shuō)法錯(cuò)誤的是( ).
A. 點(diǎn)C的坐標(biāo)是(0,1) B. 線段AB的長(zhǎng)為2
C. △ABC是等腰直角三角形 D. 當(dāng)x>0時(shí),y隨x增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標(biāo)系,拋物線y=﹣x2+x+4經(jīng)過(guò)A、B兩點(diǎn).
(1)寫(xiě)出點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)若一條與y軸重合的直線l以每秒2個(gè)單位長(zhǎng)度的速度向右平移,分別交線段OA、CA和拋物線于點(diǎn)E、M和點(diǎn)P,連接PA、PB.設(shè)直線l移動(dòng)的時(shí)間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積;
(3)在(2)的條件下,是否存在t,使得△PAM是直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com