【題目】如圖,△ABC 中,BD、CE分別是AC、AB上的高,BD與CE交于點(diǎn)O.BD=CE
(1)問(wèn)△ABC為等腰三角形嗎?為什么?
(2)問(wèn)點(diǎn)O在∠A的平分線上嗎?為什么?
【答案】(1)是,理由參見(jiàn)解析;(2)在,理由參見(jiàn)解析.
【解析】
(1)利用HL證明Rt△BCE≌Rt△DCB,由全等得到∠ABC=∠ACB,從而得到AB=AC,可知△ABC為等腰三角形;
(2)由Rt△BCE≌Rt△DCB,得到BE=CD,再利用AAS證明△EOB≌△DOC,從而得到OE=OD,又因?yàn)?/span>BD、CE分別是AC、AB上的高,所以OE⊥AB,OD⊥AC,根據(jù)角平分線的判定定理可知點(diǎn)O在∠A的平分線上.
(1)BD、CE分別是AC、AB上的高,
∠CEB=∠BDC=90°
又BD=CE,BC=CB,
Rt△BCE≌Rt△DCB(HL),
∠ABC=∠ACB(全等三角形對(duì)應(yīng)角相等)
AB=AC(等角對(duì)等邊),
△ABC為等腰三角形;
(2)Rt△BCE≌Rt△DCB,
BE=CD(全等三角形對(duì)應(yīng)邊相等),
在△EOB和△DOC中,∠EOB=∠DOC,∠OEB=∠ODC=90°,
△EOB≌△DOC(AAS),
OE=OD,
OE⊥AB,OD⊥AC,根據(jù)角平分線的判定定理(到角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上)可知點(diǎn)O在∠A的平分線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中.
(1)寫(xiě)出點(diǎn)A,點(diǎn)B的坐標(biāo)A( , ),B( , );
(2)S△ABC= ;
(3)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得△A1B1C1,在圖中畫(huà)出△A1B1C1的位置,并寫(xiě)出點(diǎn)A1、B1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,連接AC,以點(diǎn)A為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,交AB、AC于點(diǎn)M,N,分別以M,N為圓心,大于MN長(zhǎng)的一半為半徑畫(huà)弧,兩弧交于點(diǎn)H,連結(jié)AH并延長(zhǎng)交BC于點(diǎn)E,再分別以A、E為圓心,以大于AE長(zhǎng)的一半為半徑畫(huà)弧,兩弧交于點(diǎn)P,Q,作直線PQ,分別交CD,AC,AB于點(diǎn)F,G,L,交CB的延長(zhǎng)線于點(diǎn)K,連接GE,下列結(jié)論:①∠LKB=22.5°,②GE∥AB,③tan∠CGF=,④S△CGE:S△CAB=1:4.其中正確的是( 。
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一個(gè)各數(shù)位上的數(shù)字均不為的三位自然數(shù),將它各個(gè)數(shù)位上的數(shù)字平方后再取其個(gè)位,得到三個(gè)新的數(shù)字;再將這三個(gè)新數(shù)字重新組合成三位數(shù),當(dāng)的值最小時(shí),稱此時(shí)的為自然數(shù)的“理想數(shù)”,并規(guī)定:,例如,各數(shù)字平方后取個(gè)位分別為,,,再重新組合為,,,,,,因?yàn)?/span>最小,所以是原三位數(shù)的理想數(shù),此時(shí)
(1)求:.
(2)若有三位自然數(shù),滿足有兩個(gè)數(shù)位上的數(shù)字相同且不等于,另一個(gè)數(shù)位上的數(shù)字為,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上,李老師準(zhǔn)備了四張背面看上去無(wú)差別的卡片A,B,C,D,每張卡片的正面標(biāo)有字母a,b,c表示三條線段(如圖),把四張卡片背面朝上放在桌面上,李老師從這四張卡片中隨機(jī)抽取一張卡片后不放回,再隨機(jī)抽取一張.
(1)用樹(shù)狀圖或者列表表示所有可能出現(xiàn)的結(jié)果;
(2)求抽取的兩張卡片中每張卡片上的三條線段都能組成三角形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計(jì)劃開(kāi)設(shè)四門(mén)選修課:樂(lè)器、舞蹈、繪畫(huà)、書(shū)法,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問(wèn)卷調(diào)查每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門(mén)對(duì)調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:
本次調(diào)查的學(xué)生共有______人,在扇形統(tǒng)計(jì)圖中,m的值是______.
分別求出參加調(diào)查的學(xué)生中選擇繪畫(huà)和書(shū)法的人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整.
該校共有學(xué)生2000人,估計(jì)該校約有多少人選修樂(lè)器課程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD、EF相交于點(diǎn)O.
(1)寫(xiě)出∠COE的鄰補(bǔ)角;
(2)分別寫(xiě)出∠COE和∠BOE的對(duì)頂角;
(3)如果∠BOD=60°,,求∠DOF和∠FOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書(shū)九章》里記載著這樣一道題:“問(wèn)有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題的大意是:有一塊三角形沙田,三條邊長(zhǎng)分別為5里;12里;13里,問(wèn)這塊沙田面積有多大?題中的1里=0.5千米,則該沙田的面積為( )
A.3平方千米B.7.5平方千米C.15平方千米D.30平方千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O.已知∠BOD=75°,OE把∠AOC分成兩個(gè)角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數(shù);
(2)若OF平分∠BOE,問(wèn):OB是∠DOF的平分線嗎?試說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com