【題目】如圖,點P、Q分別是邊長為4cm的等邊△ABCAB、BC上的動點(端點除外),點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s,連接AQCP交于點M,則在PQ運動的過程中,

1)求證:△ABQ CAP

2)∠CMQ的大小變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);

3)連接PQ,當(dāng)點P、Q運動多少秒時,△APQ是等腰三角形?

【答案】1)證明見解析;(2)∠CMQ的大小不變且為60度;(3t=2.

【解析】

1)根據(jù)等邊三角形的性質(zhì)、三角形全等的判定定理證明;

2)根據(jù)全等三角形的性質(zhì)得到∠BAQ=∠ACP,根據(jù)三角形的外角的性質(zhì)解答;

3)分三種情況分別討論即可求解.

1)根據(jù)路程=速度×時間可得:AP=BQ

∵△ABC是等邊三角形

∴∠PAC=∠B=60°,AB=AC

∴△ABQ≌△CAPSAS

2∵ △ABQ≌△CAP

∴∠BAQ=∠ACP

∴∠CMQ=∠ACM+∠MAC=∠BAQ+∠MAC=60°

因此,CMQ的大小不變且為60

3)當(dāng)AP=AQ時,僅當(dāng)P運動到B點,Q運動到C點成立,故不符合題意;

當(dāng)PQ=AQ時,僅當(dāng)P運動到B點,Q運動到C點成立,故不符合題意;

當(dāng)AP=PQ時,如圖,當(dāng)AQBC時,AP=BP=PQ,t=2÷1=2時,APQ為等腰三角形;

綜上,當(dāng)t=2時,APQ為等腰三角形,此時AP=PQ.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮玩一個游戲:三張大小、質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字,,,現(xiàn)將標(biāo)有數(shù)字的一面朝下.小明和小亮各從中任意抽取一張.計算小明和小亮抽得的兩個數(shù)字之和,如果和為奇數(shù)則小明勝,和為偶數(shù)則小亮勝.

求小亮抽到標(biāo)有數(shù)字卡片取勝的概率;

請判斷該游戲?qū)﹄p方是否公平?請用列表法或樹狀圖等方法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)市委市政府提出的建設(shè)“綠色襄陽”的號召,我市某單位準(zhǔn)備將院內(nèi)一塊長30m,寬20m的長方形空地,建成一個矩形花園.要求在花園中修兩條縱向平行和一條橫向彎折的小道,剩余的地方種植花草,如圖所示,要使種植花草的面積為532m2,那么小道進(jìn)出口的寬度應(yīng)為多少米?(注:所有小道進(jìn)出口的寬度相等,且每段小道均為平行四邊形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用一段長為40m的籬笆圍成一個一邊靠墻的矩形花圃ABCD,墻長28m.設(shè)AB長為xm,矩形的面積為ym2

(1)寫出yx的函數(shù)關(guān)系式;

(2)當(dāng)AB長為多少米時,所圍成的花圃面積最大?最大值是多少?

(3)當(dāng)花圃的面積為150m2時,AB長為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1y=﹣x+2向下平移1個單位后,得到直線l2,l2x軸于點A,點P是直線l1上一動點,過點PPQy軸交l2于點Q

1)求出點A的坐標(biāo);

2)連接AP,當(dāng)△APQ為以PQ為底邊的等腰三角形時,求點P和點Q的坐標(biāo);

3)點BOA的中點,連接OQBQ,若點Py軸的左側(cè),M為直線y=﹣1上一動點,當(dāng)△PQM與△BOQ全等時,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某初級中學(xué)數(shù)學(xué)興趣小組為了了解本校學(xué)生的年齡情況,隨機調(diào)查了該校部分學(xué)生的年齡,整理數(shù)據(jù)并繪制如下不完整的統(tǒng)計圖.

依據(jù)以上信息解答以下問題:

(1)求樣本容量;

(2)直接寫出樣本容量的平均數(shù),眾數(shù)和中位數(shù);

(3)若該校一共有1800名學(xué)生,估計該校年齡在15歲及以上的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜生產(chǎn)基地的氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種新品種蔬菜.如圖是試驗階段的某天恒溫系統(tǒng)從開啟到關(guān)閉后,大棚內(nèi)的溫度y (℃)與時間x(h)之間的函數(shù)關(guān)系,其中線段AB、BC表示恒溫系統(tǒng)開啟階段,雙曲線的一部分CD表示恒溫系統(tǒng)關(guān)閉階段.

請根據(jù)圖中信息解答下列問題:

(1)求這天的溫度y與時間x(0≤x≤24)的函數(shù)關(guān)系式;

(2)求恒溫系統(tǒng)設(shè)定的恒定溫度;

(3)若大棚內(nèi)的溫度低于10℃時,蔬菜會受到傷害.問這天內(nèi),恒溫系統(tǒng)最多可以關(guān)閉多少小時,才能使蔬菜避免受到傷害?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,對于任意兩點,,若點滿足,,那么稱點是點的融合點.

例如:,,當(dāng)點滿是,時,則點是點,的融合點,

1)已知點,,,請說明其中一個點是另外兩個點的融合點.

2)如圖,點,點是直線上任意一點,點是點的融合點.

①試確定的關(guān)系式.

②若直線軸于點,當(dāng)為直角三角形時,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為的正方形放在平面直角坐標(biāo)系第二象限,使邊落在軸負(fù)半軸上,且點的坐標(biāo)是

(1)直線經(jīng)過點,且與軸交于點,求四邊形的面積;

(2)若直線經(jīng)過點,且將正方形分成面積相等的兩部分,求直線的解析式;

(3)若直線經(jīng)過點且與直線平行.將(2)中直線沿著軸向上平移個單位,軸于點,交直線于點,的面積.

查看答案和解析>>

同步練習(xí)冊答案