【題目】如圖,CDO的直徑,點(diǎn)BO上,連接BC、BD,直線ABCD的延長(zhǎng)線相交于點(diǎn)AAB2ADAC,OEBD交直線AB于點(diǎn)EOEBC相交于點(diǎn)F

1)求證:直線AEO的切線;

2)若O的半徑為3,cosA,求OF的長(zhǎng).

【答案】1)詳見解析;(2

【解析】

1)連接OB,根據(jù)已知條件得到△ABD∽△ACB,再根據(jù)相似三角形的性質(zhì)得到∠ABD=∠ACB,由等腰三角形的性質(zhì)得到∠OBC=∠ACB,等量代換得到∠OBC=∠ABD,于是得到結(jié)論;

2)設(shè)AB4xOA5x,根據(jù)勾股定理得到AB4,OA5,求得AD2,根據(jù)平行線分相等成比例定理得到BE6,由勾股定理得到OE3,根據(jù)三角形的面積公式得到BF,根據(jù)三角函數(shù)的定義即可得到結(jié)論.

1

如圖,連接OB,

AB2ADAC

,

∵∠A=∠A

∴△ABD∽△ACB,

∴∠ABD=∠ACB

OBOC

∴∠OBC=∠ACB,

∴∠OBC=∠ABD,

CD是⊙O的直徑,

∴∠CBD90°,

∴∠OBC+OBD90°,∠OBD+ABD90°

即∠OBA90°,

∴直線AE是⊙O的切線;

2)∵OB3cosA,

∴設(shè)AB4x,OA5x,

OA2AB2+OB2,

∴(5x2=(4x2+32

x1,

AB4,OA5,

AD2,

OEBD,

,

BE6

OE3,

∵∠CBD90°,BDOE,

∴∠EFB90°

SOBEOBBEOEBF,

OBBEOEBF

BF,

tanE,

EF,

OFOEEF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yx2bxc過點(diǎn)A(3, 0)、點(diǎn)B(0, 3).點(diǎn)M(m, 0)在線段OA上(與點(diǎn)A、O不重合),過點(diǎn)Mx軸的垂線與線段AB交于點(diǎn)P,與拋物線交于點(diǎn)Q,聯(lián)結(jié)BQ

1)求拋物線表達(dá)式;

2)聯(lián)結(jié)OP,當(dāng)∠BOP=∠PBQ時(shí),求PQ的長(zhǎng)度;

3)當(dāng)PBQ為等腰三角形時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx+6y軸交于點(diǎn)A,與x軸交于點(diǎn)B,點(diǎn)E為線段AB的中點(diǎn),∠ABO的平分線BDy軸相交于點(diǎn)D,AC兩點(diǎn)關(guān)于x軸對(duì)稱.

1)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到直線BC上的點(diǎn)F,再沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到點(diǎn)D處.當(dāng)P的運(yùn)動(dòng)路徑最短時(shí),求此時(shí)點(diǎn)F的坐標(biāo)及點(diǎn)P所走最短路徑的長(zhǎng);

2)點(diǎn)E沿直線y3水平向右運(yùn)動(dòng)得點(diǎn)E',平面內(nèi)是否存在點(diǎn)M使得以DB、ME'為頂點(diǎn)的四邊形為菱形,若存在,請(qǐng)直接寫出點(diǎn)E′的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(﹣2,1),B1,n)兩點(diǎn).

根據(jù)以往所學(xué)的函數(shù)知識(shí)以及本題的條件,你能提出求解什么問題?并解決這些問題(至少三個(gè)問題).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊三角形的土地,它的一條邊BC100米,DC邊上的高AH80米,某單位要沿著邊BC修一座底面是矩形DEFG的大樓,D、G分別在邊AB、AC上.若大樓的寬是40米(即DE40米),則這個(gè)矩形的面積是_____平方米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,∠B=90°,AB=1CD=2BC=m,點(diǎn)P是邊BC上一動(dòng)點(diǎn),若△PAB與△PCD相似,且滿足條件的點(diǎn)P恰有2個(gè),則m的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,∠B=30°,點(diǎn)OAB上,以點(diǎn)O為圓心,OA為半徑的圓與BC相切與點(diǎn)D,與AC相交與點(diǎn)E,若CD=6,則CE=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用圖中兩個(gè)可自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤做配紫色游戲:分別旋轉(zhuǎn)兩個(gè)轉(zhuǎn)盤,若其中一個(gè)轉(zhuǎn)出紅色,另-個(gè)轉(zhuǎn)出藍(lán)色即可配成紫色,則可配成紫色的概率是(

轉(zhuǎn)盤一 轉(zhuǎn)盤二

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC沿射線BC平移得到ABC,使得點(diǎn)A落在∠ABC的平分線BD上,連接AA,AC

1)判斷四邊形ABBA的形狀,并證明;

2)在ABC中,AB6BC4,若ACAB,求四邊形ABBA的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案