如圖,AB是⊙O的弦,OP⊥OA交AB于點(diǎn)P,過點(diǎn)B的直線交OP的延長(zhǎng)線于點(diǎn)C,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為,OP=1,求BC的長(zhǎng).
(1)證明見解析;(2)2.
【解析】
試題分析:(1)由垂直定義得∠A+∠APO=90°,根據(jù)等腰三角形的性質(zhì)由CP=CB得∠CBP=∠CPB,根據(jù)對(duì)頂角相等得∠CPB=∠APO,即∠APO=∠CBP,而∠A=∠OBA,得∠OBC=∠CBP+∠OBA=∠APO+∠A=90°,然后根據(jù)切線的判定定理得到BC是⊙O的切線.
(2)設(shè)BC=x,則PC=x,在Rt△OBC中,根據(jù)勾股定理得到()2+x2=(x+1)2,然后解方程即可.
試題解析:【解析】
(1)證明:如答圖,連接OB,
∵OP⊥OA,∴∠AOP=90°.∴∠A+∠APO=90°.
∵CP=CB,∴∠CBP=∠CPB.
∵∠CPB=∠APO,∴∠APO=∠CBP.
∵OA=OB,∴∠A=∠OBA.∴∠OBC=∠CBP+∠OBA=∠APO+∠A=90°.∴OB⊥BC.∴BC是⊙O的切線.
(2)設(shè)BC=x,則PC=x,
在Rt△OBC中,OB=,OC=CP+OP=x+1,
∵OB2+BC2=OC2,∴()2+x2=(x+1)2,解得x=2.
∴BC的長(zhǎng)為2.
考點(diǎn):1.等腰三角形的性質(zhì);2.切線的判定;3.勾股定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江蘇無錫卷)數(shù)學(xué)(解析版) 題型:選擇題
在直角坐標(biāo)系中,一直線a向下平移3個(gè)單位后所得直線b經(jīng)過點(diǎn)A(0,3),將直線b繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后所得直線經(jīng)過點(diǎn)B(,0),則直線a的函數(shù)關(guān)系式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江蘇常州卷)數(shù)學(xué)(解析版) 題型:解答題
在平面直角坐標(biāo)系xOy中,如圖,已知Rt△DOE,∠DOE=90°,OD=3,點(diǎn)D在y軸上,點(diǎn)E在x軸上,在△ABC中,點(diǎn)A,C在x軸上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求畫圖(保留作圖痕跡):
(1)將△ODE繞O點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)90°得到△OMN(其中點(diǎn)D的對(duì)應(yīng)點(diǎn)為點(diǎn)M,點(diǎn)E的對(duì)應(yīng)點(diǎn)為點(diǎn)N),畫出△OMN;
(2)將△ABC沿x軸向右平移得到△A′B′C′(其中點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′,B′,C′),使得B′C′與(1)中的△OMN的邊NM重合;
(3)求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江蘇常州卷)數(shù)學(xué)(解析版) 題型:選擇題
甲,乙兩人以相同路線前往距離單位10的培訓(xùn)中心參加學(xué)習(xí).圖中分別表示甲,乙兩人前往目的地所走的路程s隨時(shí)間(分)變化的函數(shù)圖象.以下說法:①乙比甲提前12分鐘到達(dá);②甲的平均速度為15千米/小時(shí);③乙走了8后遇到甲;④乙出發(fā)6分鐘后追上甲.其中正確的有( )
A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江蘇宿遷卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,已知拋物線y=ax2+bx+c(a>0,c<0)交x軸于點(diǎn)A,B,交y軸于點(diǎn)C,設(shè)過點(diǎn)A,B,C三點(diǎn)的圓與y軸的另一個(gè)交點(diǎn)為D.
(1)如圖1,已知點(diǎn)A,B,C的坐標(biāo)分別為(﹣2,0),(8,0),(0,﹣4);
①求此拋物線的表達(dá)式與點(diǎn)D的坐標(biāo);
②若點(diǎn)M為拋物線上的一動(dòng)點(diǎn),且位于第四象限,求△BDM面積的最大值;
(2)如圖2,若a=1,求證:無論b,c取何值,點(diǎn)D均為定點(diǎn),求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江蘇宿遷卷)數(shù)學(xué)(解析版) 題型:填空題
如圖,一次函數(shù)y=kx﹣1的圖象與x軸交于點(diǎn)A,與反比例函數(shù)(x>0)的圖象交于點(diǎn)B,BC垂直x軸于點(diǎn)C.若△ABC的面積為1,則k的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江蘇宿遷卷)數(shù)學(xué)(解析版) 題型:填空題
已知實(shí)數(shù)a,b滿足ab=3,a﹣b=2,則a2b﹣ab2的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江蘇南京卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過點(diǎn)E作EF∥AB,交BC于點(diǎn)F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形DBEF是菱形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(廣西賀州卷)數(shù)學(xué)(解析版) 題型:選擇題
A、B、C、D四名選手參加50米決賽,賽場(chǎng)共設(shè)1,2,3,4四條跑道,選手以隨機(jī)抽簽的方式?jīng)Q定各自的跑道,若A首先抽簽,則A抽到1號(hào)跑道的概率是( )
A.1 B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com