【題目】如圖,直線y1=x與雙曲線y2=(x>0)交于點A,將直線y1=x向下平移4個單位后稱該直線為y3,若y3與雙曲線交于B,與x軸交于C,與y軸交于D,AO=2BC,連接AB,則以下結論錯誤的有( )
①點C坐標為(3,0);②k=;③S四邊形OCBA=;④當2<x<4時,有y1>y2>y3;⑤S四邊形ABDO=2S△COD.
A. 1個 B. 2個 C. 3個 D. 4個
【答案】A
【解析】
根據(jù)一次函數(shù)圖象的平移規(guī)律,由y1=x向下平移4個單位得到直線BC的解析式為y3=x-4,然后把y=0代入確定C點坐標,即可判斷①;作AE⊥x軸于E點,BF⊥x軸于F點,易證得Rt△OAE∽△RtCBF,則===2,若設A點坐標為(a,a),則CF=a,BF=a,得到B點坐標(3+a,a),然后根據(jù)反比例函數(shù)上點的坐標特征得aa=(3+a)a,解得a=2,于是可確定點A點坐標為(2,),再將A點坐標代入y2=,求出k的值,即可判斷②;根據(jù)S四邊形OCBA=S△OAE+S梯形AEFB-S△BCF,求出S四邊形OCBA,即可判斷③;根據(jù)圖象得出當2<x<4時,直線y1在雙曲線y2的上方,雙曲線y2又在直線y3的上方,即可判斷④;先根據(jù)三角形面積公式求出S△COD=×3×4=6,再由S四邊形ABDO=S四邊形OCBA+S△OCD,得出S四邊形ABDO=12,即可判斷⑤.
解:①∵將直線y1=x向下平移4個單位后稱該直線為y3,y3與雙曲線交于B,與x軸交于C,
∴直線BC的解析式為y3=x-4,
把y=0代入,得x-4=0,解得x=3,
∴C點坐標為(3,0),故本結論正確;
②作AE⊥x軸于E點,
∵OA∥BC,
∴∠AOC=∠BCF,
∴Rt△OAE∽Rt△CBF,
∴===2,
設A點坐標為,則OE=a,AE=a,
∴CF=a,BF=a,
∴OF=OC+CF=3+a,
∴B點坐標為,
∵點A與點B都在y2=(x>0)的圖象上,
∴a·a=·a,解得a=2,
∴點A的坐標為,
把A代入y=,
得k=2×=,故本結論正確;
③∵A,B,CF=a=1,
∴S四邊形OCBA=S△OAE+S梯形AEFB-S△BCF
=×2×+××2-×1×
=+4-
=6,故本結論錯誤;
④由圖象可知,當2<x<4時,有y1>y2>y3,故本結論正確;
⑤∵S△COD=×3×4=6,S四邊形ABDO=S四邊形OCBA+S△OCD=6+6=12,
∴S四邊形ABDO=2S△COD,故本結論正確.
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在ABCD中,對角線AC,BD交于點O,AB⊥AC,AB=1,BC=.
(1)求平行四邊形ABCD的面積S□ABCD;
(2)求對角線BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=x+2與坐標軸交于A、B兩點,點A在x軸上,點B在y軸上,C點的坐標為(1,0),拋物線y=ax2+bx+c經(jīng)過點A、B、C.
(1)求該拋物線的解析式;
(2)根據(jù)圖象直接寫出不等式ax2+(b﹣1)x+c>2的解集;
(3)點P是拋物線上一動點,且在直線AB上方,過點P作AB的垂線段,垂足為Q點.當PQ=時,求P點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一枚運載火箭從距雷達站C處5km的地面O處發(fā)射,當火箭到達點A,B時,在雷達站C測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.
(1)求A,B兩點間的距離(結果精確到0.1km).
(2)當運載火箭繼續(xù)直線上升到D處,雷達站測得其仰角為56°,求此時雷達站C和運載火箭D兩點間的距離(結果精確到0.1km).(參考數(shù)據(jù):sin34°=0.56,cos34°=0.83,tan34°=0.67.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知是等邊三角形,點是的中點,點在射線上,點在射線上,,
(1)如圖1,若點與點重合,求證:.
(2)如圖2,若點在線段上,點在線段上,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學課外活動小組在做氣體壓強實驗時,獲得壓強p(Pa)與體積V(cm3)之間有下列對應數(shù)據(jù):
p(Pa) | … | 1 | 2 | 3 | 4 | 5 | … |
V(cm3) | … | 6 | 3 | 2 | 1.5 | 1.2 | … |
根據(jù)表中提供的信息,回答下列問題:
(1)猜想p與V之間的關系,并求出函數(shù)關系式;
(2)當氣體的體積是12cm3時,壓強是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點A在y軸正半軸上,點B的坐標為(0,﹣3),反比例函數(shù)y=﹣的圖象經(jīng)過點C.
(1)求點C的坐標;
(2)若點P是反比例函數(shù)圖象上的一點且S△PAD=S正方形ABCD;求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com