【題目】如圖,已知AB∥CD,CE、AE分別平分、,則= ( )
A.
B.
C.
D.
【答案】B
【解析】
由AB∥CD,根據(jù)兩直線平行,同旁內(nèi)角互補,可得∠BAC+∠ACD=180°,又由CE、AE分別平分∠ACD、∠CAB,可得,,則可求得∠1+∠2的度數(shù).
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵CE、AE分別平分∠ACD、∠CAB,
∴,,
∴.
故選B.
【考點精析】通過靈活運用平行線的性質(zhì)和三角形的內(nèi)角和外角,掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】端午節(jié)前夕,某校為學生購買了A、B兩種品牌的粽子共400個,已知B品牌粽子的單價比A品牌粽子的單價的2倍少6元.
(1)當買A品牌100個,B品牌粽子300個時,學校所花費用為4500元.求A、B兩種品牌粽子各自的單價;
(2)在兩種品牌粽子單價不變的情況下,由于資金臨時出現(xiàn)狀況,所花費用不超過4000元,問至少買A品牌粽子多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B、C、D在坐標軸上,直線AB與直線CD:y=2x+2相交于點E(a,﹣3),連接BC,其中B(0,﹣5).
(1)求直線AB的解析式;
(2)求△BCE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在去年購買A,B兩種足球,費用分別為2400元和2000元, 其中A種足球數(shù)量是B種足球數(shù)量的2倍,B種足球單價比A種足球單價多80元/個.
(1)求A,B兩種足球的單價;
(2)由于該校今年被定為“足球特色校”,學校決定再次購買A,B兩種足球共18個,且本次購買B種足球的數(shù)量不少于A種足球數(shù)量的2倍,若單價不變,則本次如何購買才能使費用W最少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,F是AD的中點,延長BC到點E,使CE=BC,連接DE,CF.
(1)求證:四邊形CEDF是平行四邊形;
(2)若AB=4,AD=6,∠B=60°,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菏澤牡丹機場位于菏澤市定陶區(qū)孟海鎮(zhèn)西北,距満澤市中心直線距離約20公里,飛行區(qū)指標為4C級,跑道長2600米,菏澤機場性質(zhì)為國內(nèi)支線機場,計劃2019年10月1日建成通航,預(yù)計機場年旅客吞吐量900000人次.數(shù)據(jù)900000用科學記數(shù)法表示為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=8,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE于G,BG=4 ,則四邊形AECD的周長為( )
A.20
B.21
C.22
D.23
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com