解答:解:(1)∵矩形OABC邊長(zhǎng)OA、OC分別為12cm和6cm,
∴點(diǎn)A、B的坐標(biāo)分別為A(0,-12),B(6,-12),
又∵拋物線y=ax
2+bx+c經(jīng)過點(diǎn)A、B,且18a+c=0,
∴
| c=-12 | | 36a+6b+c=-12 | ; | 18a+c=0 | |
| |
,
解得
,
∴拋物線解析式為y=
x
2-4x-12;
(2)①根據(jù)題意,PB=AB-AP=6-t,BQ=2t,
所以,S=
PB•BQ=
(6-t)×2t=-t
2+6t,
即S=-t
2+6t,
點(diǎn)P運(yùn)動(dòng)的時(shí)間為6÷1=6秒,
點(diǎn)Q運(yùn)動(dòng)的時(shí)間為12÷2=6秒,
所以,t的取值范圍是0<t<6;
②拋物線上存在點(diǎn)R(3,-18),使P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形.
理由如下:
∵S=-t
2+6t=-(t-3)
2+9,
∴當(dāng)t=3秒時(shí),S取最大值,
此時(shí),PB=AB-AP=6-t=6-3=3,
BQ=2t=2×3=6,
所以,要使P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形,
(i)當(dāng)QR與PB是對(duì)邊時(shí),點(diǎn)R的橫坐標(biāo)是6+3=9,縱坐標(biāo)是-(12-6)=-6,
所以點(diǎn)R的坐標(biāo)為(9,-6),
此時(shí)
×9
2-4×9-12=6≠-6,
所以點(diǎn)R不在拋物線上,
(ii)當(dāng)PR與QB是對(duì)邊時(shí),點(diǎn)R的橫坐標(biāo)是3,縱坐標(biāo)是-(12+6)=-18,
所以點(diǎn)R的坐標(biāo)是(3,-18),
此時(shí),
×3
2-4×3-12=-18,
所以點(diǎn)R在拋物線上,
綜上所述,拋物線上存在點(diǎn)R(3,-18),使P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形.