精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,在矩形紙片中,,,折疊紙片使點落在上的點處,折痕為,過點于點.

1)求證:四邊形為菱形;

2)當折痕的點與點重合時(如圖2),求菱形的邊長.

【答案】1)見解析;(2)邊長為.

【解析】

1)根據一組對邊平行且相等可證得:四邊形BFEP為平行四邊形,再加上PB=PE可得結論;

2)先由折疊得:EC=BC=AD=5,利用勾股定理得:ED=4,設PE=x,則PB=x,AP=3-xRtAPE中,由勾股定理得:,解出即可;

1)證明:有題意可知:

∵點與點關于對稱,

,

∴∠BPF=

∴四邊形BFED是平行四邊形,

∴四邊形為菱形;

2)如圖,當點與點重合時,

由折疊可知:EC=BC=AD=5,

∵在直角△CDE中,CD=AB=3,

AE=1,

PE=x,則PB=x,AP=3-x,

RtAPE中,由勾股定理得:,

解得:,

即菱形的邊長PB=.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).

(1)四邊形EFGH是什么四邊形?證明你的結論.

(2)當四邊形ABCD的對角線滿足 條件時,四邊形EFGH是矩形;

(3)你學過的哪種特殊四邊形的中點四邊形是矩形? . (填一種即可)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結論的個數是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形中,,分別為,上的點,,于點于點,的中點,于點,連接.下列結論:①;②;③;④.其中正確的結論有(

A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面坐標系中,正方形ABCD的位置如右圖所示,點A的坐標為(1,0),點D的坐標為(0,2),延長CBx軸于點A1,作正方形A1B1C1C,延長C1B1x軸于點A2,作正方形A2B2C2C1,…按這樣的規(guī)律進行下去,第2018個正方形的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知如圖,邊長為2的正方形中,是對角線上的一個動點(與點、不重合),過點,交射線于點,過點,垂足為點.

1)求證:

2)在點的運動過程中,的長度是否發(fā)生變化?若不變,試求出這個不變的值,寫出解答過程:若變化,試說明理由:

3)在點的運動過程中,能否為等腰三角形?如果能,直接寫出此時的長;如果不能,試說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,點E,F是對角線BD上兩點,DE=BF

1)判斷四邊形AECF是什么特殊四邊形,并證明;

2)若EF=4DE=BF=2,求四邊形AECF的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,鐵路上A,B兩點相距25 km,C,D為兩村莊,DAAB于點ACBAB于點B,已知DA15 km,CB10 km,現(xiàn)在要在鐵路AB上建一個土特產品收購站E,使得CD兩村到E站的距離相等,則E站應建在離A站多少km處?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】圖中的折線表示某汽車的耗油量(單位:)與速度(單位:)之間的函數關系(),已知線段表示的函數關系中,該汽車的速度每增加,耗油量增加

(1) 當速度為、時,該汽車的耗油量分別為_____、____;

(2) 速度是多少時,該汽車的耗油量最低?最低是多少?

查看答案和解析>>

同步練習冊答案