【題目】點(diǎn)M(-6,5)到x軸的距離是_____,到y軸的距離是______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算(﹣2a2b3)3的結(jié)果是( 。
A.﹣2a6b9B.﹣8a6b9C.8a6b9D.﹣6a6b9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某三角形的三邊長(zhǎng)分別為4,9,a,若a為偶數(shù),則a的取值有( 。
A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與x軸交于A(6,0)、B(,0)兩點(diǎn),與y軸交于點(diǎn)C,過(guò)拋物線上點(diǎn)M(1,3)作MN⊥x軸于點(diǎn)N,連接OM.
(1)求此拋物線的解析式;
(2)如圖1,將△OMN沿x軸向右平移t個(gè)單位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′與直線AC分別交于點(diǎn)E、F.
①當(dāng)點(diǎn)F為M′O′的中點(diǎn)時(shí),求t的值;
②如圖2,若直線M′N′與拋物線相交于點(diǎn)G,過(guò)點(diǎn)G作GH∥M′O′交AC于點(diǎn)H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某一時(shí)刻太陽(yáng)光從教室窗戶射入室內(nèi),與地面的夾角∠BPC為30°,窗戶的一部分在教室地面所形成的影長(zhǎng)PE為3.5米,窗戶的高度AF為2.5米.求窗外遮陽(yáng)蓬外端一點(diǎn)D到教室窗戶上椽的距離AD.(結(jié)果精確0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)將直角三角形ABC(∠C為直角)按如圖1放置,使得坐標(biāo)原點(diǎn)與點(diǎn)C重合,已知A(a,3),B(b,-3),且a+b=8,求三角形ACB的面積:
(2)將直角三角形ACB(∠C為直角)按如圖2方式放置,使得點(diǎn)O在邊AC上,D是y軸上一點(diǎn),過(guò)D作DF//x軸,交AB于F點(diǎn),AB交x軸于點(diǎn)G, BC交DF于點(diǎn)E, 若∠AOG=50°,求∠BEF的度數(shù)。
將直角三角形ACB(∠C為直角)按照如圖3方式放置,使得∠C在x軸于DF之間,N為AC邊上一點(diǎn),且∠NEC+∠CEF=180°,寫出∠NEF與∠AOG之間的數(shù)量關(guān)系,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2﹣4x+3.
(1)用配方法求其圖象的頂點(diǎn)C的坐標(biāo);
(2)求函數(shù)圖象與x軸的交點(diǎn)A,B的坐標(biāo),及△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com