【題目】如圖1,在平面直角坐標(biāo)系中,雙曲線與直線交于、兩點(diǎn),直線分別交軸、軸于、兩點(diǎn),為軸上一點(diǎn).已知,點(diǎn)坐標(biāo)為.
(1)將線段沿軸平移得線段(如圖1),在移動(dòng)過程中,是否存在某個(gè)位置使的值最大?若存在,求出的最大值及此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
(2)將直線沿射線平移,平移過程中交的圖象于點(diǎn)(不與重合),交軸于點(diǎn)(如圖2).在平移過程中,是否存在某個(gè)位置使為以為腰的等腰三角形?若存在,求出的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)|BO′﹣AE′|的最大值為,此時(shí)點(diǎn)O′的坐標(biāo)(﹣,0);
(2)存在,點(diǎn)M的坐標(biāo)為(,)或(8,)
【解析】
(1)把A向左平移5個(gè)單位得A1(﹣2,4),作B關(guān)于x軸的對(duì)稱點(diǎn)B1,則有|BO′﹣AE′|=|BO′﹣A1O′|=B1O′﹣A1O′|≤A1B1,想辦法求出A1B1,直線A1B1的解析式即可解決問題.
(2)設(shè)M(m,),則N(m﹣,0),NE2=(5﹣m+)2,ME2=(5﹣m)2+()2,MN2=()2+()2,分MN=EM,MN=NE兩種情形,分別構(gòu)建方程即可解決問題.
解:(1)如圖1中,
∵A(3,4),
∴OA==5,
∵OA=OC=OE,
∴OA=OC=OE=5,
∴C(﹣5,0),E(5,0),
把A、C兩點(diǎn)坐標(biāo)代入y=ax+b得到,
解得,
∴直線的解析式為,
把A(3,4)代入y=中,得到k=12,
∴反比例函數(shù)的解析式為y=,
把A向左平移5個(gè)單位得A1(﹣2,4),作B關(guān)于x軸的對(duì)稱點(diǎn)B1,
則有|BO′﹣AE′|=|BO′﹣A1O′|=B1O′﹣A1O′|≤A1B1,
∵直線AC:,
雙曲線:y=
∴,
∴,
直線A1B1:,
令y=0,可得,
∴O′(﹣,0).
∴|BO′﹣AE′|的最大值為,此時(shí)點(diǎn)O′的坐標(biāo)(﹣,0).
(2)設(shè)M(m,),則N(m﹣,0),NE2=(5﹣m+)2,ME2=(5﹣m)2+()2,MN2=()2+()2
若MN=ME,則有,(5﹣m)2+()2=()2+(
∴M(,),
若MN=NE,則有(5﹣m+)2=()2+()2,解得m=8或3(舍棄),
∴M(8,),
綜上所述,滿足條件的點(diǎn)M的坐標(biāo)為(,)或(8,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(x1,y1)和點(diǎn)Q(x2,y2)是關(guān)于x的函數(shù)y=mx2﹣(2m+1)x+m+1(m為實(shí)數(shù))圖象上兩個(gè)不同的點(diǎn).對(duì)于下列說法:①不論m為何實(shí)數(shù),關(guān)于x的方程mx2﹣(2m+1)x+m+1=0必有一個(gè)根為x=1;②當(dāng)m=0時(shí),(x1﹣x2)(y1﹣y2)<0成立;③當(dāng)x1+x2=0時(shí),若y1+y2=0,則m=﹣1;④當(dāng)m≠0時(shí),拋物線頂點(diǎn)在直線y=﹣x+1上.其中正確的是( 。
A.①②B.①②③C.③④D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,點(diǎn)E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于F,連接CF.
(1)求證:△AEF≌△DEB;
(2)若∠BAC=90°,求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是2018年三月份某居民小區(qū)隨機(jī)抽取20戶居民的用水情況::
月用水量/噸 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
戶數(shù) | 2 | 4 | m | 4 | 3 | 0 | 1 |
(1)求出m= ,補(bǔ)充畫出這20戶家庭三月份用電量的條形統(tǒng)計(jì)圖;
(2)據(jù)上表中有關(guān)信息,計(jì)算或找出下表中的統(tǒng)計(jì)量,并將結(jié)果填入表中:
統(tǒng)計(jì)量名稱 | 眾數(shù) | 中位數(shù) | 平均數(shù) |
數(shù)據(jù) |
|
|
|
(3)為了倡導(dǎo)“節(jié)約用水綠色環(huán)!钡囊庾R(shí),江贛市自來水公司實(shí)行“梯級(jí)用水、分類計(jì)費(fèi)”,價(jià)格表如下:
月用水梯級(jí)標(biāo)準(zhǔn) | Ⅰ級(jí)(30噸以內(nèi)) | Ⅱ級(jí)(超過30噸的部分) |
單價(jià)(元/噸) | 2.4 | 4 |
如果該小區(qū)有500戶家庭,根據(jù)以上數(shù)據(jù),請(qǐng)估算該小區(qū)三月份有多少戶家庭在Ⅰ級(jí)標(biāo)準(zhǔn)?
(4)按上表收費(fèi),如果某用戶本月交水費(fèi)120元,請(qǐng)問該用戶本月用水多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4)
(1)請(qǐng)畫出將△ABC向左平移4個(gè)單位長(zhǎng)度后得到的圖形△A1B1C1;
(2)請(qǐng)畫出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的圖形△A2B2C2;
(3)在x軸上找一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+2經(jīng)過點(diǎn)A(-1,0)和點(diǎn)B(4,0),且與y軸交于點(diǎn)C,點(diǎn)D的坐標(biāo)為(2,0),點(diǎn)P(m,n)是該拋物線上的一個(gè)動(dòng)點(diǎn),連接CA,CD,PD,PB.
⑴求拋物線的解析式;
⑵當(dāng)△PDB的面積等于△CAD的面積時(shí),求點(diǎn)P的坐標(biāo);
⑶當(dāng)m>0,n>0時(shí),過點(diǎn)P作直線PE⊥y軸于點(diǎn)E交直線BC于點(diǎn)F,過點(diǎn)F作FG⊥x軸于點(diǎn)G,連接EG,請(qǐng)直接寫出隨著點(diǎn)P的運(yùn)動(dòng),線段EG的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工程隊(duì)在完成某項(xiàng)工程的過程中,因提高了工作效率從而縮短了工作時(shí)間.經(jīng)測(cè)試:工作時(shí)間縮短的百分率是工作效率提高的百分率的2倍,且提高工作效率后的工作量是原來工作量的0.88倍.若完成原來工作量的時(shí)間為3小時(shí),求提高工作效率后完成工作量所花的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年3月19日,河南省教育廳發(fā)布《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的實(shí)施方案》,某中學(xué)為落實(shí)方案,給學(xué)生提供了以下五種主題式研學(xué)線路:A.“紅色河南”,B.“厚重河南”C.“出彩河南”,D.“生態(tài)河南”,E.“老家河南”為了解學(xué)生最喜歡哪一種研學(xué)線路(每人只選取一種),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖.根據(jù)以上信息解答下列問題:
調(diào)查結(jié)果統(tǒng)計(jì)表
主題 | 人數(shù)/人 | 百分比 |
A | 75 | n% |
B | m | 30% |
C | 45 | 15% |
D | 60 | |
E | 30 |
(1)本次接受調(diào)查的總?cè)藬?shù)為 人,統(tǒng)計(jì)表中m= ,n= .
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若把條形統(tǒng)計(jì)圖改為扇形統(tǒng)計(jì)圖,則“生態(tài)河南”主題線路所在扇形的圓心角度是 .
(4)若該實(shí)驗(yàn)中學(xué)共有學(xué)生3000人,請(qǐng)據(jù)此估計(jì)該校最喜歡“老家河南”主題線路的學(xué)生有多少人.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com