如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別是線段AD及其延長線上,且DE=DF,給出下列條件:①BE⊥EC;②BF∥EC;③AB=AC,從中選擇一個條件使四邊形BECF是菱形,并給出證明,你選擇的條件是 (只填寫序號).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),與y軸交于點(diǎn)A,拋物線的頂點(diǎn)為D.
(1)填空:點(diǎn)A的坐標(biāo)為( , ),點(diǎn)B的坐標(biāo)為( , ),點(diǎn)C的坐標(biāo)為( , ),點(diǎn)D的坐標(biāo)為( , );
(2)點(diǎn)P是線段BC上的動點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合)
①過點(diǎn)P作x軸的垂線交拋物線于點(diǎn)E,若PE=PC,求點(diǎn)E的坐標(biāo);
②在①的條件下,點(diǎn)F是坐標(biāo)軸上的點(diǎn),且點(diǎn)F到EA和ED的距離相等,請直接寫出線段EF的長;
③若點(diǎn)Q是線段AB上的動點(diǎn)(點(diǎn)Q不與點(diǎn)A、B重合),點(diǎn)R是線段AC上的動點(diǎn)(點(diǎn)R不與點(diǎn)A、C重合),請直接寫出△PQR周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,四邊形ABCD中,AD∥BC,E是DC上一點(diǎn),連接BE并延長交AD延長線于點(diǎn)F,請你只添加一個條件: 使得四邊形BDFC為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
估計×+的運(yùn)算結(jié)果應(yīng)在哪兩個連續(xù)自然數(shù)之間( 。
A. 5和6 B. 6和7 C. 7和8 D. 8和9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某農(nóng)場急需銨肥8噸,在該農(nóng)場南北方向分別有一家化肥公司A、B,A公司有銨肥3噸,每噸售價750元;B公司有銨肥7噸,每噸售價700元,汽車每千米的運(yùn)輸費(fèi)用b(單位:元/千米)與運(yùn)輸重量a(單位:噸)的關(guān)系如圖所示.
(1)根據(jù)圖象求出b關(guān)于a的函數(shù)解析式(包括自變量的取值范圍);
(2)若農(nóng)場到B公司的路程是農(nóng)場到A公司路程的2倍,農(nóng)場到A公司的路程為m千米,設(shè)農(nóng)場從A公司購買x噸銨肥,購買8噸銨肥的總費(fèi)用為y元(總費(fèi)用=購買銨肥費(fèi)用+運(yùn)輸費(fèi)用),求出y關(guān)于x的函數(shù)解析式(m為常數(shù)),并向農(nóng)場建議總費(fèi)用最低的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,AB=AC,AD是BC邊上的中線,以AD為直徑作⊙O,連接BO并延長至E,使得OE=OB,連接AE.
(1)求證:AE是⊙O的切線;
(2)若BD=AD=4,求陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com