計(jì)算:
(1)
3
-
45
+3
1
5
;                 
(2)
0.6×2.7
-
(
2
-2)
2
考點(diǎn):二次根式的加減法
專題:計(jì)算題
分析:(1)先將二次根式化為最簡,然后合并同類二次根式即可;
(2)先開平方,然后再進(jìn)行同類二次根式的合并即可.
解答:解:(1)原式=
3
-3
5
+
3
5
5

=
3
-
12
5
5
;

(2)原式=3
0.18
-(2-
2

=3×
3
2
10
-2+
2

=
19
2
10
-2.
點(diǎn)評:本題考查了二次根式的加減運(yùn)算,屬于基礎(chǔ)題,解答本題的關(guān)鍵是掌握二次根式的化簡及同類二次根式的合并.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-x2+bx+c與x軸交于點(diǎn)A(1,0)、C,交y軸于點(diǎn)B,對稱軸x=-1與x軸交于點(diǎn)D.

(1)求該拋物線的解析式和B、C點(diǎn)的坐標(biāo);
(2)設(shè)點(diǎn)P(x,y)是第二象限內(nèi)該拋物線上的一個動點(diǎn),△PBD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)點(diǎn)G在x軸負(fù)半軸上,且∠GAB=∠GBA,求G的坐標(biāo);
(4)若此拋物線上有一點(diǎn)Q,滿足∠QCA=∠ABO?若存在,求直線QC的解析式;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形ABCD放在平面直角坐標(biāo)系中,A(0,5),B(0,0),C(26,0),D(24,5)動點(diǎn)P,從A開始沿AD邊向D以1cm/s的速度運(yùn)動,動點(diǎn)Q從點(diǎn)C開始沿CB以3cm/s的速度向點(diǎn)B運(yùn)動.P、Q同時出發(fā),當(dāng)其中一點(diǎn)到達(dá)頂點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動,設(shè)運(yùn)動時間為ts,問:
(1)當(dāng)t為何值時,四邊形PQCD是平行四邊形?
(2)當(dāng)t為何值時,四邊形PQCD為等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)
81
+
3-27
+
(-
2
3
)2

(2)|
3
-
2
|+|
3
-2|+
(-2)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線a∥b,直線與直線a、b分別交與點(diǎn)A、B且∠1=45°.
(1)量出直線a與b之間的距離.(要求:畫出測量所需圖形;測量結(jié)果保留整數(shù))
(2)你的測量結(jié)果等于AB的長嗎?如果不等于AB,利用你的測量結(jié)果能否求出AB的長?若能,請求出AB的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖所示的平面直角坐標(biāo)系中將三角形ABC平移后得到三角形A′B′C′,若點(diǎn)A對應(yīng)點(diǎn)A′的坐標(biāo)是(0,6).
(1)在圖中畫出三角形A′B′C′
(2)此次平移可看作將三角形ABC向
 
平移了
 
個單位長度,再向
 
平移了
 
個單位長度得到A′B′C′;
(3)求三角形A′B′C′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了了解學(xué)生對體育活動的喜愛情況,某校對參加足球、籃球、乒乓球、羽毛球這四個課外活動小組的人員分布情況進(jìn)行抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息,將條形統(tǒng)計(jì)圖補(bǔ)充完整,并計(jì)算扇形統(tǒng)計(jì)圖中的籃球總分的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將一副三角板和一張對邊平行的紙條按下列方式擺放,兩個三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個頂點(diǎn)在紙條的另一邊上,則∠1的度數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程5x-y=7,用含x的代數(shù)式表示y,y=
 

查看答案和解析>>

同步練習(xí)冊答案