【題目】不等式組 的最大整數解為 .
【答案】0
【解析】解:解不等式2x<x+1,得:x<1,
解不等式 ≤2,得:x≥﹣4,
∴不等式組的解集為﹣4≤x<1,
則不等式組的最大整數解為0,
所以答案是:0.
【考點精析】解答此題的關鍵在于理解一元一次不等式組的解法的相關知識,掌握解法:①分別求出這個不等式組中各個不等式的解集;②利用數軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ),以及對一元一次不等式組的整數解的理解,了解使不等式組中的每個不等式都成立的未知數的值叫不等式組的解,一個不等式組的所有的解組成的集合,叫這個不等式組的解集(簡稱不等式組的解).
科目:初中數學 來源: 題型:
【題目】已知矩形ABCD,點E在AD邊上,DE>AE,連接BE,將△ABE沿著BE翻折得到△BFE,射線EF交BC于G,若點G為BC的中點,FG=1,DE=6,則AE的長 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:
關于x的方程:的解是,;即的解是;的解是,;的解是,;
請觀察上述方程與解的特征,比較關于x的方程與它們的關系,猜想它的解是什么?并利用“方程的解”的概念進行驗證.
由上述的觀察、比較、猜想、驗證,可以得出結論:
如果方程的左邊是未知數與其倒數的倍數的和,方程的右邊的形式與左邊完全相同,只是把其中的未知數換成了某個常數,那么這樣的方程可以直接得解,請用這個結論解關于x的方程:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰直角三角板ABC的斜邊AB與量角器的直徑重合,點D是量角器上60°刻度線的外端點,連接CD交AB于點E,則∠CEB的度數為( )
A.60°
B.65°
C.70°
D.75°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形AOBC和四邊形CDEF都是正方形,邊OA在x軸上,邊OB在y軸上,點D在邊CB上,反比例函數y= 在第二象限的圖象經過點E,則正方形AOBC和正方形CDEF的面積之差為( )
A.12
B.10
C.8
D.6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一艘輪船航行到B處時,測得小島A在船的北偏東60°的方向上,輪船從B處繼續(xù)向正東方向航行100海里到達C處時,測得小島A在船的北偏東30°的方向上,AD⊥BC于點D,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有兩個不相等的實數根,求k的取值范圍;
(2)若方程的兩根恰好是一個矩形的兩邊長,且k=4,求該矩形的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+ 經過A(1,0),B(7,0)兩點,交y軸于D點,以AB為邊在x軸上方作等邊三角形ABC.
(1)求拋物線的解析式;
(2)在x軸上方的拋物線上是否存在點M,是S△ABM= S△ABC?若存在,請求出點M的坐標;若不存在,請說明理由;
(3)如圖2,E是線段AC上的動點,F是線段BC上的動點,AF與BE相交于點P.
①若CE=BF,試猜想AF與BE的數量關系及∠APB的度數,并說明理由;
②若AF=BE,當點E由A運動到C時,請直接寫出點P經過的路徑長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P是線段AB上一點,AB=12cm,C、D兩點分別從P、B出發(fā)以1cm/s、2cm/s的速度沿直線AB向左運動(C在線段AP上,D在線段BP上),運動的時間為t.
(1)當t=1時,PD=2AC,請求出AP的長;
(2)當t=2時,PD=2AC,請求出AP的長;
(3)若C、D運動到任一時刻時,總有PD=2AC,請求出AP的長;
(4)在(3)的條件下,Q是直線AB上一點,且AQ﹣BQ=PQ,求PQ的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com