在平面直角坐標(biāo)系中,我們不妨把橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)稱為“夢(mèng)之點(diǎn)”,例如點(diǎn)(﹣1,﹣1),(0,0),(,),…都是“夢(mèng)之點(diǎn)”,顯然,這樣的“夢(mèng)之點(diǎn)”有無(wú)數(shù)個(gè).
(1)若點(diǎn)P(2,m)是反比例函數(shù)y=(n為常數(shù),n≠0)的圖象上的“夢(mèng)之點(diǎn)”,求這個(gè)反比例函數(shù)的解析式;
(2)函數(shù)y=3kx+s﹣1(k,s是常數(shù))的圖象上存在“夢(mèng)之點(diǎn)”嗎?若存在,請(qǐng)求出“夢(mèng)之點(diǎn)”的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若二次函數(shù)y=ax2+bx+1(a,b是常數(shù),a>0)的圖象上存在兩個(gè)不同的“夢(mèng)之點(diǎn)”A(x1,x1),B(x2,x2),且滿足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣2b+,試求出t的取值范圍.
(1)y=;(2)當(dāng)k≠時(shí),“夢(mèng)之點(diǎn)”的坐標(biāo)為(,);當(dāng)k=,s=1時(shí),“夢(mèng)之點(diǎn)”有無(wú)數(shù)個(gè);當(dāng)k=,s≠1時(shí),不存在“夢(mèng)之點(diǎn)”;(3)t>.
【解析】
試題分析:(1)先由“夢(mèng)之點(diǎn)”的定義得出m=2,再將點(diǎn)P坐標(biāo)代入y=,運(yùn)用待定系數(shù)法即可求出反比例函數(shù)的解析式;
(2)假設(shè)函數(shù)y=3kx+s﹣1(k,s是常數(shù))的圖象上存在“夢(mèng)之點(diǎn)”(x,x),則有x=3kx+s﹣1,整理得(3k﹣1)x=1﹣s,再分三種情況進(jìn)行討論即可;
(3)先將A(x1,x1),B(x2,x2)代入y=ax2+bx+1,得到ax12+(b﹣1)x1+1=0,ax22+(b﹣1)x2+1=0,根據(jù)方程的解的定義可知x1,x2是一元二次方程ax2+(b﹣1)x+1=0的兩個(gè)根,由根與系數(shù)的關(guān)系可得x1+x2=,x1•x2=,則(x1﹣x2)2=(x1+x2)2﹣4x1•x2==4,整理得出b2﹣2b=(2a+1)2﹣2,則t=b2﹣2b+=(2a+1)2+.再由﹣2<x1<2,|x1﹣x2|=2,得出﹣4<x2<4,﹣8<x1•x2<8,即﹣8<<8,又a>0,解不等式組得出a>,進(jìn)而求出t的取值范圍.
試題解析:(1)∵點(diǎn)P(2,m)是“夢(mèng)之點(diǎn)”,
∴m=2,
∵點(diǎn)P(2,2)在反比例函數(shù)y=(n為常數(shù),n≠0)的圖象上,
∴n=2×2=4,
∴反比例函數(shù)的解析式為y=;
(2)假設(shè)函數(shù)y=3kx+s﹣1(k,s是常數(shù))的圖象上存在“夢(mèng)之點(diǎn)”(x,x),
則有x=3kx+s﹣1,
整理,得(3k﹣1)x=1﹣s,
當(dāng)3k﹣1≠0,即k≠時(shí),解得x=;
當(dāng)3k﹣1=0,1﹣s=0,即k=,s=1時(shí),x有無(wú)窮多解;
當(dāng)3k﹣1=0,1﹣s≠0,即k=,s≠1時(shí),x無(wú)解;
綜上所述,當(dāng)k≠時(shí),“夢(mèng)之點(diǎn)”的坐標(biāo)為(,);當(dāng)k=,s=1時(shí),“夢(mèng)之點(diǎn)”有無(wú)數(shù)個(gè);當(dāng)k=,s≠1時(shí),不存在“夢(mèng)之點(diǎn)”;
(3)∵二次函數(shù)y=ax2+bx+1(a,b是常數(shù),a>0)的圖象上存在兩個(gè)不同的“夢(mèng)之點(diǎn)”A(x1,x1),B(x2,x2),
∴x1=ax12+bx1+1,x2=ax22+bx2+1,
∴ax12+(b﹣1)x1+1=0,ax22+(b﹣1)x2+1=0,
∴x1,x2是一元二次方程ax2+(b﹣1)x+1=0的兩個(gè)不等實(shí)根,
∴x1+x2=,x1•x2=,
∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=()2﹣4×==4,
∴b2﹣2b=4a2+4a﹣1=(2a+1)2﹣2,
∴t=b2﹣2b+=(2a+1)2﹣2+=(2a+1)2+.
∵﹣2<x1<2,|x1﹣x2|=2,
∴﹣4<x2<0或0<x2<4,
∴﹣4<x2<4,
∴﹣8<x1•x2<8,
∴﹣8<<8,
∵a>0,
∴a>
∴(2a+1)2+>+=,
∴t>.
考點(diǎn):二次函數(shù)綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2014年初中畢業(yè)升學(xué)考試(福建三明卷)數(shù)學(xué)(解析版) 題型:填空題
有兩塊面積相同的蔬菜試驗(yàn)田,第一塊使用原品種,第二塊使用新品種,分別收獲蔬菜1500千克和2100千克.已知第二塊試驗(yàn)田每畝的產(chǎn)量比第一塊多200千克.若設(shè)第一塊試驗(yàn)田每畝的產(chǎn)量為x千克,則根據(jù)題意列出的方程是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014年初中畢業(yè)升學(xué)考試(甘肅蘭州卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014年初中畢業(yè)升學(xué)考試(甘肅蘭州卷)數(shù)學(xué)(解析版) 題型:選擇題
把拋物線y=﹣2x2先向右平移1個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度后,所得函數(shù)的表達(dá)式為( 。
A.y=﹣2(x+1)2+2 B.y=﹣2(x+1)2﹣2
C.y=﹣2(x﹣1)2+2 D.y=﹣2(x﹣1)2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014年初中畢業(yè)升學(xué)考試(甘肅蘭州卷)數(shù)學(xué)(解析版) 題型:選擇題
期中考試后,班里有兩位同學(xué)議論他們所在小組同學(xué)的數(shù)學(xué)成績(jī),小明說(shuō):“我們組成績(jī)是86分的同學(xué)最多”,小英說(shuō):“我們組的7位同學(xué)成績(jī)排在最中間的恰好也是86分”,上面兩位同學(xué)的話能反映處的統(tǒng)計(jì)量是( 。
A.眾數(shù)和平均數(shù) B.平均數(shù)和中位數(shù)
C.眾數(shù)和方差 D.眾數(shù)和中位數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014年初中畢業(yè)升學(xué)考試(湖南長(zhǎng)沙卷)數(shù)學(xué)(解析版) 題型:解答題
先簡(jiǎn)化,再求值:(1+)+,其中x=3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014年初中畢業(yè)升學(xué)考試(湖南長(zhǎng)沙卷)數(shù)學(xué)(解析版) 題型:填空題
如圖,A、B、C是⊙O上的三點(diǎn),∠AOB=100°,則∠ACB= 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014年初中畢業(yè)升學(xué)考試(湖南郴州卷)數(shù)學(xué)(解析版) 題型:解答題
某日,正在我國(guó)南海海域作業(yè)的一艘大型漁船突然發(fā)生險(xiǎn)情,相關(guān)部門接到求救信號(hào)后,立即調(diào)遣一架直升飛機(jī)和一艘剛在南海巡航的漁政船前往救援.當(dāng)飛機(jī)到達(dá)距離海面3000米的高空C處,測(cè)得A處漁政船的俯角為60°,測(cè)得B處發(fā)生險(xiǎn)情漁船的俯角為30°,請(qǐng)問(wèn):此時(shí)漁政船和漁船相距多遠(yuǎn)?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014年初中畢業(yè)升學(xué)考試(湖南邵陽(yáng)卷)數(shù)學(xué)(解析版) 題型:選擇題
地球的表面積約為511000000km2,用科學(xué)記數(shù)法表示正確的是( )
A.5.11×1010km2 B.5.11×108km2 C.51.1×107km2 D.0.511×109km2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com