【題目】如圖,正方形的邊長為,點在邊上,且,過點作直線的垂線的延長線于點,連接,則的長為________

【答案】.

【解析】

FMGCM,則FMAB,由正方形的性質(zhì)得出∠ABC=90°,AB=CB=6,由ASA證明ABG≌△CBE,得出BG=BE,AG=CE,由AE=2BE,得出BG=BE=2,由勾股定理求出AGCE=AG=2,證明AFE∽△CBE,得出對應(yīng)邊成比例求出AF=,求出FG=AGAF=,由平行線得出,求出FM=,GM=,得出BM=BGGM=,再由勾股定理求出BF即可.

FMGCM,如圖所示:

FMAB,

∵四邊形ABCD是正方形,

∴∠ABC=90°,AB=CB=6,

∴∠ABG=90°,

∴∠G+BAG=90°,

CFAG,

∴∠AFE=CFG=90°,

∴∠G+BCE=90°,

∴∠BAG=BCE,

ABGCBE中,

,

∴△ABG≌△CBE(ASA),

BG=BE,AG=CE,

AE=2BE,

BE=2,AE=4,

BG=BE=2,CE=AG=

∵∠AFE=ABC=90°,BAG=BCE,

∴△AFE∽△CBE,

,即,

解得:AF=,

FG=AGAF=

FMAB,

,

解得:FM=,GM=,

BM=BGGM=,

BF=;

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>

(1) (2)2x2+3x—1=0(用配方法解)

(3) (4)(x+1)(x+8)=-2

(5) (6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,以為直徑,為圓心的半圓交于點,點為弧的中點,連接于點,的角平分線,且,垂足為點

判斷直線的位置關(guān)系,并說明理由;

,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一學校為了解九年級學生某次體育測試成績,現(xiàn)對這次體育測試成績進行隨機抽樣調(diào)查,結(jié)果統(tǒng)計如下,其中扇形統(tǒng)計圖中C等級所在扇形的圓心角為36°

被抽取的體育測試成績頻數(shù)分布表

等級

成績(分)

頻數(shù)(人數(shù))

A

36x≤40

19

B

32x≤36

b

C

28x≤32

5

D

24x≤28

4

E

20x≤24

2

合計

a

請你根據(jù)以上圖表提供的信息,解答下列問題:

1a   b   ;

2A等級的頻率是   

3)在扇形統(tǒng)計圖中,B等級所對應(yīng)的圓心角是   度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格上有一個DEF

1)畫出DEF關(guān)于直線HG的軸對稱圖形(不寫畫法);

2)畫EF邊上的高(不寫畫法);

3)若網(wǎng)格上的最小正方形邊長為1,則DEF的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市南湖生態(tài)城某樓盤準備以每平方米元的均價對外銷售,由于國務(wù)院有關(guān)房地產(chǎn)的新政策出臺后,購房者持幣觀望,房地產(chǎn)開發(fā)商為了加快資金周轉(zhuǎn),對價格經(jīng)過兩次下調(diào)后,決定以每平方米元的均價開盤銷售.

求平均每次下調(diào)的百分率;

王先生準備以開盤價均價購買一套平方米的住房,開發(fā)商給予以下兩種優(yōu)惠方案:

折銷售;

不打折,一次性送裝修費每平方米元,試問那種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某同學把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去B.帶②去C.帶③去D.帶①和②去

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為厲行節(jié)能減排,倡導綠色出行,今年3月以來.“共享單車”(俗稱“小黃車”)公益活動登陸我市中心城區(qū),某公司擬在甲、乙兩個街道社區(qū)投放一批“小黃車”,這批自行車包括A、B兩種不同款型,請回答下列問題:

問題1:單價

該公司早期在甲街區(qū)進行了試點投放,共投放A、B兩型自行車各50輛,投放成本共計7500元,其中B型車的成本單價比A型車高10元,A、B兩型自行車的單價各是多少?

問題2:投放方式

該公司決定采取如下投放方式:甲街區(qū)每1000人投放a輛“小黃車”,乙街區(qū)每1000人投放 輛“小黃車”,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個街區(qū)共有15萬人,試求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某?萍夹〗M進行野外考察,途中遇到一片濕地,為了安全、迅速通過這片濕地,他們沿著前進路線鋪了若干塊木塊,構(gòu)筑成一條臨時近道,木板對地面的壓強是木板面積的反比例函數(shù),其圖像如下圖所示:

1)請直接寫出這一函數(shù)表達式和自變量取值范圍;

2)當木板面積為時,壓強是多少?

3)如果要求壓強不超過,木板的面積至少要多大?

查看答案和解析>>

同步練習冊答案