已知一個(gè)菱形的周長(zhǎng)是20,兩條對(duì)角線的比是4:3,則這個(gè)菱形的面積是( 。
A、12B、24C、48D、96
考點(diǎn):菱形的性質(zhì)
專題:
分析:根據(jù)菱形的四條邊都相等求出邊長(zhǎng),再根據(jù)菱形的對(duì)角線互相垂直平分設(shè)出兩對(duì)角線的一半分別為4k、3k,然后利用勾股定理列式求解并求出兩對(duì)角線的長(zhǎng),然后根據(jù)菱形的面積等于對(duì)角線乘積的一半列式計(jì)算即可得解.
解答:解:∵菱形的周長(zhǎng)是20,
∴菱形的邊長(zhǎng)為20÷4=5,
∵兩條對(duì)角線的比是4:3,
∴設(shè)兩對(duì)角線的一半分別為4k、3k,
由勾股定理得,(4k)2+(3k)2=52,
解得k=1,
∴兩對(duì)角線的一半分別為4,3,
兩對(duì)角線的長(zhǎng)分別為8,6,
∴這個(gè)菱形的面積=
1
2
×8×6=24.
故選B.
點(diǎn)評(píng):本題考查了菱形的性質(zhì),勾股定理,主要利用了菱形的對(duì)角線互相垂直平分的性質(zhì),利用勾股定理列出方程是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩人在400米的環(huán)形跑道上練習(xí)賽跑.如果兩人同時(shí)同地反向跑,經(jīng)過(guò)25秒后第一次相遇;如果兩人同時(shí)同地同向跑,經(jīng)過(guò)250秒甲第一次追上乙.設(shè)甲、乙每秒分別跑x米、y米,則根據(jù)題意,可列方程組
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直角三角形的兩條邊長(zhǎng)分別為3cm和4cm,則它的第三邊長(zhǎng)為( 。
A、5cm
B、
7
cm
C、2cm
D、5cm或
7
cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)y=-x+1,下列結(jié)論正確的是( 。
A、圖象必經(jīng)過(guò)點(diǎn)(-1,1)
B、y隨x的減小而減小
C、當(dāng)x>1時(shí),y<0
D、圖象經(jīng)過(guò)第二、三、四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,△ABC平移得到△DEF,若∠DEF=35°,∠ACB=70°,則∠A的度數(shù)是( 。
A、55°B、65°
C、75°D、85°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知t是方程x2-x-1=0的一個(gè)解,則-t3+2t2+2002的值為( 。
A、2001B、2002
C、2003D、2004

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,則∠ABC的度數(shù)是( 。
A、30°B、45°
C、60°D、75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某機(jī)械廠七月份生產(chǎn)零件52萬(wàn)個(gè),第三季度生產(chǎn)零件196萬(wàn)個(gè).設(shè)該廠八、九月份平均每月的增長(zhǎng)率為x,那么x滿足的方程是(  )
A、52(1+x2)=196
B、52+52(1+x2)=196
C、52+52(1+x)+52(1+x)2=196
D、52+52(1+x)+52(1+2x)=196

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線開(kāi)口向下且經(jīng)過(guò)原點(diǎn),邊長(zhǎng)為2的等邊三角形OAB的頂點(diǎn)A在x軸的正半軸上,將等邊三角形OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,使點(diǎn)B落在拋物線上的B′點(diǎn)處.求拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案