已知二次函數(shù)
(1)若點(diǎn)在此二次函數(shù)的圖象上,則     (填 “>”、“=”或“<”);
(2)如圖,此二次函數(shù)的圖象經(jīng)過(guò)點(diǎn),正方形ABCD的頂點(diǎn)C、D在x軸上, A、B恰好在二次函數(shù)的圖象上,求圖中陰影部分的面積之和.

(1);(2).

解析試題分析:
解:(1)由二次函數(shù)圖象知:其圖像關(guān)于 軸對(duì)稱(chēng),
又∵點(diǎn)在此二次函數(shù)的圖象上,
也在此二次函數(shù)的圖象上,
∵當(dāng) 時(shí)函數(shù)是增函數(shù),
.
(2)∵二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(0,-4),
∴m = -4.  
∵四邊形ABCD為正方形,
又∵拋物線和正方形都是軸對(duì)稱(chēng)圖形,且y軸為它們的公共對(duì)稱(chēng)軸,
∴OD=OC,.
設(shè)點(diǎn)B的坐標(biāo)為(n,2n)(n >0),
∵點(diǎn)B在二次函數(shù)的圖象上,
.
解得,(舍負(fù)).
∴點(diǎn)B的坐標(biāo)為(2,4).
=24=8.
考點(diǎn):二次函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

李經(jīng)理在某地以10元/千克的批發(fā)價(jià)收購(gòu)了2 000千克核桃,并借一倉(cāng)庫(kù)儲(chǔ)存.在存放過(guò)程中,平均每天有6千克的核桃損耗掉,而且倉(cāng)庫(kù)允許存放時(shí)間最多為60天.若核桃的市場(chǎng)價(jià)格在批發(fā)價(jià)的基礎(chǔ)上每天每千克上漲0.5元。
(1)存放x天后,將這批核桃一次性出售,如果這批核桃的銷(xiāo)售總金額為y元,試求出y與x之間的函數(shù)關(guān)系式;
(2)如果倉(cāng)庫(kù)存放這批核桃每天需要支出各種費(fèi)用合計(jì)340元,李經(jīng)理要想獲得利潤(rùn)22 500元,需將這批核桃存放多少天后出售?(利潤(rùn)=銷(xiāo)售總金額-收購(gòu)成本-各種費(fèi)用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線y=x2+bx+c經(jīng)過(guò)(2,-1)和(4,3)兩點(diǎn).
(1)求出這個(gè)拋物線的解析式;
(2)將該拋物線向右平移1個(gè)單位,再向下平移3個(gè)單位,得到的新拋物線解析式為             .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)y=mx2-6x+1(m是常數(shù)).
⑴求證:不論m為何值,該函數(shù)的圖象都經(jīng)過(guò)y軸上的一個(gè)定點(diǎn);
⑵若該函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:拋物線與x軸交于點(diǎn)A、B(A左B右),其中點(diǎn)B的坐標(biāo)為(7,0),設(shè)拋物線的頂點(diǎn)為C.

(1)求拋物線的解析式和點(diǎn)C的坐標(biāo);
(2)如圖1,若AC交y軸于點(diǎn)D,過(guò)D點(diǎn)作DE∥AB交BC于E.點(diǎn)P為DE上一動(dòng)點(diǎn),PF⊥AC于F,PG⊥BC于G.設(shè)點(diǎn)P的橫坐標(biāo)為a,四邊形CFPG的面積為y,求y與a的函數(shù)關(guān)系式和y的最大值;
(3)如圖2,在條件(2)下,過(guò)P作PH⊥x軸于點(diǎn)H,連結(jié)FH、GH,是否存在點(diǎn)P,使得△PFH與△PHG相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)y=x2–kx+k–1(k>2).

(1)求證:拋物線y=x2–kx+k-1(k>2)與x軸必有兩個(gè)交點(diǎn);
(2)拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,若,求拋物線的表達(dá)式;
(3)以(2)中的拋物線上一點(diǎn)P(m,n)為圓心,1為半徑作圓,直接寫(xiě)出:當(dāng)m取何值時(shí),x軸與相離、相切、相交.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某汽車(chē)租賃公司擁有20輛汽車(chē).據(jù)統(tǒng)計(jì),當(dāng)每輛車(chē)的日租金為400元時(shí),可全部租出;當(dāng)未租出的車(chē)將增加1輛,每輛車(chē)的日租金每增加50元,;公司平均每日的各項(xiàng)支出共4800元.設(shè)公司每日租出工輛車(chē)時(shí),日收益為y元.(日收益=日租金收入一平均每日各項(xiàng)支出)
(1)公司每日租出x輛車(chē)時(shí),每輛車(chē)的日租金為      元(用含x的代數(shù)式表示);
(2)當(dāng)每日租出多少輛時(shí),租賃公司日收益最大?最大是多少元?
(3)當(dāng)每日租出多少輛時(shí),租賃公司的日收益不盈也不虧?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

小明投資銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷(xiāo)售過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):,在銷(xiāo)售過(guò)程中銷(xiāo)售單價(jià)不低于成本價(jià),而每件的利潤(rùn)不高于成本價(jià)的60%.
(1)設(shè)小明每月獲得利潤(rùn)為w(元),求每月獲得利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?每月的最大利潤(rùn)是多少?
(3)如果小明想要每月獲得的利潤(rùn)不低于2000元,那么小明每月的成本最少需要多少元?
(成本=進(jìn)價(jià)×銷(xiāo)售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商店將進(jìn)價(jià)為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價(jià)減少銷(xiāo)售量的辦法增加利潤(rùn),若這種商品每件的銷(xiāo)售價(jià)每提高0.5元,其銷(xiāo)售量就減少10件.問(wèn)(1)每件售價(jià)定為多少元時(shí),才能使利潤(rùn)為640元?(2)每件售價(jià)定為多少元時(shí),才能使利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案