【題目】已知:如圖,拋物線y=ax2+bx+6x軸于A﹣2,0),B30)兩點(diǎn),交y軸于點(diǎn)C.

1)求a,b的值;

2)連接BC,點(diǎn)P為第一象限拋物線上一點(diǎn),過(guò)點(diǎn)AADx軸,過(guò)點(diǎn)PPDBC于交直線AD于點(diǎn)D,設(shè)點(diǎn)P的橫坐標(biāo)為t,AD長(zhǎng)為d,求dt的函數(shù)關(guān)系式(請(qǐng)求出自變量t的取值范圍);

3)在(2)的條件下,DPBC交于點(diǎn)F,過(guò)點(diǎn)DDEABBC于點(diǎn)E,點(diǎn)Q為直線DP上方拋物線上一點(diǎn),連接APPC,若DP=CEQPC=APD時(shí),求點(diǎn)Q坐標(biāo).

【答案】1a=-1b=1;(2d=t2+t+50t3);(3)點(diǎn)Q坐標(biāo)為Q16)或Q, ).

【解析】試題分析:

(1)把A、B兩點(diǎn)的坐標(biāo)代入拋物線的解析式列出關(guān)于a、b的二元一次方程組,解方程組即可求得a、b的值;

2如下圖2、過(guò)點(diǎn)PPGDE于點(diǎn)K,交x軸于點(diǎn)G,作DKPG于點(diǎn)K,則由已知條件易得BCO=PDK,由此可得tanPDK==tanBCO,結(jié)合OB=3,OC=6DK=t+2可得PK=DK=t+2);再證四邊形ADKG是矩形可得KG=AD=d=PG-PK結(jié)合PG=-t2+t+6即可得到dt間的函數(shù)關(guān)系式了,由點(diǎn)P在第一象限的圖象上可得0<t<3

3)如下圖3,過(guò)點(diǎn)PPHAD于點(diǎn)Hy軸于點(diǎn)R,由已知條件易證PHD≌△CNE從而可得PH=CN,結(jié)合CN=OC-ONPH=t+2可得關(guān)于t的方程t+2=t2t+1,解方程可得t1=2,t2=(舍),把t=2代入拋物線y=x2+x+6=4可得點(diǎn)P2,4,由此可得PR=CR,PH=AH,從而可得∠APC=90°結(jié)合QPC=APD可得QPD=90°,然后分點(diǎn)P在第一象限的拋物線上和第三象限的拋物線上兩種情況討論計(jì)算即可得到對(duì)應(yīng)的點(diǎn)Q的坐標(biāo).

試題解析

1∵拋物線y=ax2+bx+6過(guò)點(diǎn)A﹣20),B3,0),則

,解得: ,

故拋物線解析式為y=﹣x2+x+6;

2)如下圖2,過(guò)點(diǎn)PPG⊥x于點(diǎn)G,過(guò)點(diǎn)DDK∥x軸交PG于點(diǎn)K


PDBC,DEy軸,∠BCO=PDK,OB=3,OC=6

tanBCO=tanPDK=,DK=t+2,PK=DK=t+2),

DKABADAB,

∴四邊形ADKG為矩形,

AD=KG,

d=AD=KG=PGPK=t2+t+6t+2=t2+t+50t3);

3)如圖3,過(guò)點(diǎn)PPHAD于點(diǎn)H

PHDCNE中, ,

∴△PHD≌△CNE

PH=CN=OC﹣ON,

∵四邊形ADON為矩形,

CN=6t2+t+5=t2t+1,PH=t+2,

t+2=t2t+1,

解得t1=2,t2=(舍),

t=2代入拋物線y=﹣x2+x+6=4,

∴點(diǎn)P2,4),

PHy軸交于點(diǎn)R,PR=CR=2,

∴∠CPR=45°PH=AH=4,

∴∠APH=45°,

∴∠APC=90°,

∵∠QPC=APD

∴∠QPD=90°,

當(dāng)點(diǎn)Q在第一象限時(shí),過(guò)點(diǎn)QQLPH于點(diǎn)L

∴∠LQP=HPD,

tanLQP=tanHPD=

設(shè)點(diǎn)Qm,﹣m2+m+6),PL=2﹣mQL=﹣m2+m+2,則

=,

解得m1=1,m2=2(舍),

m=1 代入﹣m2+m+6=6,

Q1,6),

當(dāng)點(diǎn)Q在第二象限時(shí),過(guò)點(diǎn)QQMPH,

∵∠CPH=APH=45°QPC=APD,

∴∠QPM=DPH tanQPM=tanDPH=,

設(shè)點(diǎn)Qn,﹣n2+n+6PM=2﹣n QM=﹣n2+n+2,

=,

解得n1=n2=2(舍),

n=1代入﹣n2+n+6=,

Q, ).

綜上所述,點(diǎn)Q坐標(biāo)為Q1,6)或Q ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出:將一個(gè)邊長(zhǎng)為nn≥2)的正三角形的三條邊n等分,連接各邊對(duì)應(yīng)的等分點(diǎn), 則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少呢?

問(wèn)題探究:要研究上面的問(wèn)題,我們不妨先從特例入手,進(jìn)而找到一般規(guī)律

探究一:將一個(gè)邊長(zhǎng)為2的正三角形的三條邊平分,連接各邊中點(diǎn),則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?

如圖1,連接邊長(zhǎng)為2的正三角形三條邊的中點(diǎn),從上往下:共有1+2+3=6個(gè)結(jié)點(diǎn).邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有2個(gè),共有1+2=3個(gè),線段數(shù)為3×3=9條;邊長(zhǎng)為2的正三角形有1個(gè),線段數(shù)為3條,總共有1+2+1=2×1+2+3=12條線段.

探究二:將一個(gè)邊長(zhǎng)為3的正三角形的三條邊三等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?

如圖2,連接邊長(zhǎng)為3的正三角形三條邊的對(duì)應(yīng)三等分點(diǎn),從上往下:共有1+2+3+4=10個(gè)結(jié)點(diǎn).邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有2個(gè),第三層有3個(gè),共有1+2+3=6個(gè),線段數(shù)為3×6=18條;邊長(zhǎng)為2的正三角形有1+2=3個(gè),線段數(shù)為3×3=9條,邊長(zhǎng)為3的正三角形有1個(gè),線段數(shù)為3條,總共有1+2+3+1+2+1=3×1+2+3+4=30條線段.

探究三:

請(qǐng)你仿照上面的方法,探究將邊長(zhǎng)為4的正三角形的三條邊四等分(圖3),連接各邊對(duì)應(yīng)的等分點(diǎn),該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?

(畫(huà)出示意圖,并寫(xiě)出探究過(guò)程)

問(wèn)題解決:

請(qǐng)你仿照上面的方法,探究將一個(gè)邊長(zhǎng)為nn≥2)的正三角形的三條邊n等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?(寫(xiě)出探究過(guò)程)

實(shí)際應(yīng)用:

將一個(gè)邊長(zhǎng)為30的正三角形的三條邊三十等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,在平面直角坐標(biāo)系中,點(diǎn)A和點(diǎn)B分別在x軸和y軸的正半軸上,OA=3,OB=2OAC為直線y=2x與直線AB的交點(diǎn),點(diǎn)D在線段OC上,OD=

1)求點(diǎn)C的坐標(biāo);

2)若P為線段AD上一動(dòng)點(diǎn)(不與A、D重合).P的橫坐標(biāo)為xPOD的面積為S,請(qǐng)求出Sx的函數(shù)關(guān)系式;

3)若F為直線AB上一動(dòng)點(diǎn),Ex軸上一點(diǎn),是否存在以OD、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,寫(xiě)出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一元二次方程2x2+2x﹣1=0的兩個(gè)根為x1,x2,且x1<x2,下列結(jié)論正確的是(  )

A. x1+x2=1 B. x1x2=﹣1 C. |x1|<|x2| D. x12+x1=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某市為方便行人過(guò)馬路,打算修建一座高為4x(m)的過(guò)街天橋.已知天橋的斜面坡度i=1:0.75是指坡面的鉛直高度DE(CF)與水平寬度AE(BF)的比,其中DC∥AB,CD=8x(m).

(1)請(qǐng)求出天橋總長(zhǎng)和馬路寬度AB的比;

(2)若某人從A地出發(fā),橫過(guò)馬路直行(A→E→F→B)到達(dá)B地,平均速度是2.5m/s;返回時(shí)從天橋由BC→CD→DA到達(dá)A地,平均速度是1.5m/s,結(jié)果比去時(shí)多用了12.8s,請(qǐng)求出馬路寬度AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:直線mn,點(diǎn)A,B分別是直線m,n上任意兩點(diǎn),在直線n上取一點(diǎn)C,使BC=AB,連接AC,在直線AC上任取一點(diǎn)E,作∠BEF=ABC,EF交直線m于點(diǎn)F

1)如圖1,當(dāng)點(diǎn)E在線段AC上,且∠AFE=30°時(shí),求∠ABE的度數(shù);

2)若點(diǎn)E是線段AC上任意一點(diǎn),求證:EF=BE;

3)如圖2,當(dāng)點(diǎn)E在線段AC的延長(zhǎng)線上時(shí),若∠ABC=90°,請(qǐng)判斷線段EFBE的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊與正方形重疊,其中兩點(diǎn)分別在,上,且,若,則的面積為(

A. 1B.

C. 2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加比賽,對(duì)他們進(jìn)行了六次測(cè)試,測(cè)試成績(jī)?nèi)缦卤恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

平均成績(jī)

中位數(shù)

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5

(1)完成表中填空① ;② ;

(2)請(qǐng)計(jì)算甲六次測(cè)試成績(jī)的方差;

(3)若乙六次測(cè)試成績(jī)方差為,你認(rèn)為推薦誰(shuí)參加比賽更合適,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC三邊分別為、,根據(jù)下列條件能判斷ABC為直角三角形的有

①∠A=B+C;②∠A:∠B:∠C=345;③;④,

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案