【題目】如圖a,AB為⊙O直徑,AC為⊙O的為弦,PA為⊙O的切線(xiàn),∠APC=2∠1.
(1)求證:PC是⊙O的切線(xiàn).
(2)當(dāng)∠1=30°,AB=4時(shí),其他條件不變,求圖b中陰影部分的面積.
【答案】(1)見(jiàn)解析;(2)4-π
【解析】
(1)連接OC,首先證明∠APC+∠AOC=180°,由PA是圓的切線(xiàn)可得∠OAP=90°,根據(jù)四邊形內(nèi)角和可得∠OCP=90°,從而得證;
(2)
(1)證明:連結(jié)OC.
在圓O中,OA=OC,
∴∠BOC=2∠1=∠APC
∠BOC+∠AOC=180°
∴∠APC+∠AOC=180°
∵PA為⊙O的切線(xiàn),
∴∠OAP=90°
又四邊形內(nèi)角和為360°,
∴∠OCP=90°,OC為⊙O的半徑
∴PC為⊙O的切線(xiàn).
(2)∵PA為⊙O的切線(xiàn),PC為⊙O的切線(xiàn).
∴PA=PC
∵∠1=30°,∠APC=2∠1
∴∠APC=60°,∠AOC=120°,
∴△APC為等邊三角形.
連結(jié)OP,OC,則∠APO=∠CPO=30°
∵AB=4
∴OC=OA=2,
在Rt△POA中,PO=4,PA=2,
∴S四邊形AOCP=2××2×2=4,
S扇形AOC=×π×4=π
S陰影部分的面積=4-π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店經(jīng)銷(xiāo)一種雙肩包,已知這種雙肩包的成本價(jià)每個(gè)20元,市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷(xiāo)售量(單位:個(gè))與銷(xiāo)售單價(jià)(單位:元)有如下關(guān)系:()設(shè)這種雙肩包每天的銷(xiāo)售利潤(rùn)為元.
(1)這種雙肩包銷(xiāo)售單價(jià)定為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?
(2)如果物價(jià)部門(mén)規(guī)定這種雙肩包的銷(xiāo)售單價(jià)不高于48元,該商店銷(xiāo)售這種雙肩包每天要獲得300元的銷(xiāo)售利潤(rùn),銷(xiāo)售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C是的一定點(diǎn),D是弦AB上的一定點(diǎn),P是弦CB上的一動(dòng)點(diǎn).連接DP,將線(xiàn)段PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)得到線(xiàn)段.射線(xiàn)與交于點(diǎn)Q.已知,設(shè)P,C兩點(diǎn)間的距離為xcm,P,D兩點(diǎn)間的距離,P,Q兩點(diǎn)的距離為.
小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù),,隨自變量x的變化而變化的規(guī)律進(jìn)行了探究,下面是小石的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫(huà)圖、測(cè)量,分別得到了,,與x的幾組對(duì)應(yīng)值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
/cm | 4.29 | 3.33 | 1.65 | 1.22 | 1.50 | 2.24 | |
/cm | 0.88 | 2.84 | 3.57 | 4.04 | 4.17 | 3.20 | 0.98 |
(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)據(jù)所對(duì)應(yīng)的點(diǎn),,并畫(huà)出函數(shù),的圖象;
(3)結(jié)合函數(shù)圖象,解決問(wèn)題:連接DQ,當(dāng)△DPQ為等腰三角形時(shí),PC的長(zhǎng)度約為_____cm.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=ax2-4ax+c(a≠0)與y軸交于點(diǎn)A,將點(diǎn)A向右平移2個(gè)單位長(zhǎng)度,得到點(diǎn)B.直線(xiàn)與x軸,y軸分別交于點(diǎn)C,D.
(1)求拋物線(xiàn)的對(duì)稱(chēng)軸.
(2)若點(diǎn)A與點(diǎn)D關(guān)于x軸對(duì)稱(chēng).
①求點(diǎn)B的坐標(biāo).
②若拋物線(xiàn)與線(xiàn)段BC恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解鹽瀆街道~歲居民最喜歡的春節(jié)晚會(huì)節(jié)目類(lèi)型,某興趣小組對(duì)街道內(nèi)該年齡段部分居民展開(kāi)了隨機(jī)問(wèn)卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖. 請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)求參與問(wèn)卷調(diào)查的總?cè)藬?shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出扇形的圓心角;
(3)該街道~歲的居民約人,估算這些人中最喜歡歌舞類(lèi)節(jié)目的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=8cm,AC=16cm,點(diǎn)P從A出發(fā),以每秒1厘米的速度向B運(yùn)動(dòng),點(diǎn)Q從C同時(shí)出發(fā),以每秒2厘米的速度向A運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)也相應(yīng)停止運(yùn)動(dòng).那么,當(dāng)以A、P、Q為頂點(diǎn)的三角形與△ABC相似時(shí),運(yùn)動(dòng)時(shí)間是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,半徑OC=6,D是半徑OC上一點(diǎn),且 OD=4.A,B是⊙O上的兩個(gè)動(dòng)點(diǎn),∠ADB=90°,F是AB的中點(diǎn),則OF的長(zhǎng)的最大值等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)的圖象過(guò)點(diǎn)A(2,3).
(1)求反比例函數(shù)的解析式;
(2)過(guò)A點(diǎn)作AC⊥x軸,垂足為C.若P是反比例函數(shù)圖象上的一點(diǎn),求當(dāng)△PAC的面積等于6時(shí),點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=ax2﹣x+c與x軸相交于A、B兩點(diǎn),并與直線(xiàn)y=x﹣2交于B、C兩點(diǎn),其中點(diǎn)C是直線(xiàn)y=x﹣2與y軸的交點(diǎn),連接AC.
(1)求拋物線(xiàn)的解析式;
(2)證明:△ABC為直角三角形;
(3)△ABC內(nèi)部能否截出面積最大的矩形DEFG?(頂點(diǎn)D、E、F、G在△ABC各邊上)若能,求出最大面積;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com